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Big	numbers
Infinity,	as	no	end	of	people	will	tell	you,	is	a	big	subject.	It	will	take	you	into
history,	philosophy	and	the	physical	world,	but	is	best	first	approached	through
mathematics.	It	makes	sense	to	ease	into	it	via	big	numbers.

By	giving	a	lengthy	number	a	name	you	seem	to	demonstrate	your	power	over	it
–	and	the	bigger	the	number	is,	the	more	impressive	your	ability.	This	is
reflected	in	the	reported	early	life	of	Gautama	Buddha.	As	part	of	his	testing	as	a
young	man	in	an	attempt	to	win	the	hand	of	Gopa,	Gautama	was	required	to
name	numbers	up	to	a	huge,	totally	worthless	value.	Not	only	did	he	succeed,
but	he	carried	on	to	bigger	numbers	still.

100,000,000,000,000,000?	EASY,	THAT’S	ACHOBYA.



Googoled
It’s	fine	giving	names	to	numbers	we	encounter	every	day,	but	how	many	of	us
will	ever	use	this	number?

As	it	happens,	it	does	have	a	name,	one	that	proved	a	problem	for	the
unfortunate	Major	Charles	Ingram	when	it	was	his	million-pound	question	on
TV	show	Who	Wants	to	be	a	Millionaire?	He	was	asked	if	the	number	–	1	with
100	noughts	after	it	–	was	a	“googol”,	a	“megatron”,	a	“gigabit”	or	a	“nanomol”.
Major	Ingram	favoured	the	last	of	these,	until	a	cough	from	the	audience
prompted	him	towards	googol.	To	be	honest,	who	can	blame	him?	“Googol”
sounds	childish.



Googol	is	childish	–	for	a	good	reason.	In	1938,	according	to	legend,
mathematician	Ed	Kasner	was	working	on	some	numbers	on	his	blackboard	at
home.	His	nephew,	nine-year-old	Milton	Sirrota,	was	visiting.	Young	Milton
spotted	the	biggest	number	and	is	supposed	to	have	said:	“That	looks	like	a
googol!”

This	isn’t	a	very	convincing	story,	though.	There’s	no	reason	why	Kasner	would
bother	to	write	such	a	number	on	a	blackboard.



WHAT	WOULD	YOU	CALL	A	REALLY,	REALLY	BIG	NUMBER	(SAY	1	WITH	100	NOUGHTS	AFTER	IT)?
A	GOOGOL!



Symbols	from	India
To	deal	with	any	number	we	need	symbols	that	represent	numerical	values.	The
symbol	equivalents	of	the	words	“one”,	“two”,	“three”	and	so	on	(1,	2,	3…)
arrived	in	the	West	from	India	via	the	Arabic	world.	The	oldest	known	ancestors
of	the	modern	system	were	found	in	caves	and	on	coins	around	Bombay	dating
back	to	the	1st	century	AD.

The	numbers	1	to	3	were	based	on	a	line,	two	lines	and	three	lines,	like
horizontal	Roman	numerals,	though	they	can	still	be	seen	with	some	imagination
in	the	main	strokes	of	our	modern	numbers.	The	markings	for	4	to	9	are	closer
ancestors	of	the	symbols	we	use	today.



The	Indian	symbols	were	adopted	in	the	Arabic	world,	coming	to	the	West	in	the
13th	century	thanks	to	two	books,	written	by	a	philosopher	in	Baghdad	and	a
traveller	from	Pisa.	The	earlier	book,	lost	in	the	Arabic	original,	was	written	by



al–Khwarizmi	(c.	780–850)	in	the	9th	century.	The	Latin	translation	of	this,
Algo-ritmi	de	numero	Indorum,	was	produced	around	300	years	later,	and	is
thought	to	have	been	considerably	modified	in	the	process.

The	version	of	al-Khwarizmi’s	name	in	the	title	is	usually	given	as	the	origin	of
the	term	“algorithm”,	though	it’s	sometimes	linked	to	the	Greek	word	for
number,	arithmos.



The	Book	of	Calculation
The	traveller	from	Pisa	was	Leonardo	Fibonacci	(c.	1170–1250).	(His	father,	a
Pisan	diplomat,	was	Guglielmo	Bonacci,	and	“Fibonacci”	is	a	contraction	of
filius	Bonacci,	son	of	Bonacci.)	He	travelled	widely	in	North	Africa	and	became
the	foremost	mathematician	of	his	time,	his	name	inevitably	linked	to	the
Fibonacci	numbers	(see	here),	which	he	popularized	but	didn’t	discover.
Although	Numero	Indorum	was	translated	into	Latin	a	little	before	Fibonacci’s
book	Liber	abaci	came	out	in	1202,	it	seems	that	Liber	abaci	(“The	Book	of
Calculation”)	had	the	bigger	influence	in	introducing	the	Indian	system	to	the
West.



ON	MY	TRAVELS	I	WAS	INTRODUCED	TO	THE	ART	OF	THE	INDIAN’S	NINE	SYMBOLS.



0,	a	powerful	tool
The	symbols	we	use	for	numbers	are	arbitrary.	¶,	β,	√,	π,	ԓ	would	do	as	well	as
1,	2,	3,	4,	5.	However,	the	new	Indian	numerals	brought	with	them	a	very
powerful	tool.	Earlier	systems	from	Babylonian	through	to	Roman	were	tallies,
sequential	marks	to	count	objects.	We’re	most	familiar	with	Roman	numerals	–
the	tally	sequence	is	obvious	in	I,	II,	III,	IV,	V	–	where	V	is	effectively	a	crossed
through	set	of	IIII	and	IV	is	one	less	than	V.	But	the	trouble	with	such	systems	is
that	there’s	no	obvious	mechanism	to	add,	say,	XIV	to	XXI.

THE	NEW	SYSTEM	USED	COLUMNS	WITH	A	PLACE-HOLDER	O	FOR	EMPTY	SPACES,	TRANSFORMING	ARITHMETIC.



Archimedes:	The	Sand	Reckoner
But	whatever	symbols	are	used,	big	numbers	kept	their	appeal.	In	a	book	called
The	Sand	Reckoner,	ancient	Greek	philosopher	Archimedes	(c.	287-212	BC)
demonstrated	to	King	Gelon	of	Syracuse	that	he	could	estimate	the	number	of
grains	of	sand	it	would	take	to	fill	the	universe.

We	don’t	know	a	lot	about	Archimedes,	but	we	do	have	a	number	of	his	books,
which	show	him	to	be	a	superb	mathematician	and	a	practical	engineer.	He	is
said	to	have	devised	defence	weapons	for	Syracuse	ranging	from	ship-grabbing
cranes	to	vast	metal	mirrors	to	focus	sunlight	and	set	ships	on	fire.



Unlike	many	of	Archimedes’	other	works,	The	Sand	Reckoner	wasn’t	exactly
practical.	But	there	was	a	serious	point	behind	this	entertaining	exercise.	What
Archimedes	set	out	to	do	was	to	show	how	the	Greek	number	system,	which	ran
out	at	a	myriad	myriads	(100	million),	could	be	extended	without	limit.	He	first
estimated	the	size	of	the	universe	at	around	1,800	million	kilometres	(just
outside	the	orbit	of	Saturn).

He	then	decided	how	many	sand	grains	are	needed	to	be	the	size	of	a	poppy
seed,	how	many	of	these	fit	in	a	sphere	of	finger’s	breadth,	and	so	on	up	to	fill
the	universe,	using	his	newly	designed	system.	His	final	count	suggested	that	the
universe	should	hold	around	1051	sand	grains	(1	with	51	zeros	after	it).

Tantalizingly,	Archimedes	also	mentions	the	work	of	the	philosopher
Aristarchus,	who	had	written	a	book	(now	lost)	that	put	the	Sun	at	the	centre	of
the	universe	rather	than	the	Earth.	Archimedes	calculated	the	size	of	this

“UNIVERSE”	IS	THE	NAME	GIVEN	BY	MOST	ASTRONOMERS	TO	THE	SPHERE	WHOSE	CENTRE	IS	THE	CENTRE	OF	THE	EARTH.



universe	too,	which	he	made	significantly	bigger	than	the	traditional	model.
Aristarchus’	fanciful	Sun-centred	universe	would	hold	around	1063	grains.

THERE	ARE	SOME,	KING	GELON,	WHO	THINK	THAT	THE	NUMBER	OF	THE	SAND	IS	INFINITE	IN	MULTITUDE…



The	poetry	of	infinity
Archimedes’	feat	was	later	celebrated	by	the	poet	John	Donne	(1572–1631),
who	commented:	“Men	have	calculated	how	many	particular	graines	of	sand,
would	fill	up	all	the	vast	space	between	the	Earth	and	the	Firmament.”	Donne
used	this	huge	number	to	emphasize	that	it	was	negligible	in	contrast	with	the
limitless	nature	of	infinity	and	eternity.

BUT	IF	EVERY	GRAIN	OF	SAND	WERE	THAT	NUMBER,	AND	MULTIPLIED	AGAIN	BY	THAT	NUMBER,	YET	ALL	THAT	MADE	UP	NOT	ONE	MINUTE	OF	THIS	ETERNITY	…



Number	sequences
In	practice,	Archimedes	had	used	only	a	tiny	fraction	of	his	system,	but	the
Greeks	were	also	aware	of	sequences	of	numbers	that	went	on	for	ever.	Number
sequences	are	part	of	every	culture.	Most	children	recite	counting	rhymes	(“One,
two,	buckle	my	shoe	…”)	to	help	recall	the	sequence	of	the	counting	numbers.

Once	children	learn	the	basic	structure	of	the	numbers	and	the	way	the	sequence
of	integers*	works,	they	often	count	up	and	up	interminably.	But	where	do	the
numbers	stop?	Children	often	seem	to	be	trying	to	find	the	biggest	number.	But
they’ll	never	get	there.	They	could	count	for	the	rest	of	their	life,	and	there
would	still	be	as	many	numbers	to	go	as	there	were	to	start	with.	Imagine	there
were	a	biggest	number,	let’s	call	it	max.	What’s	to	stop	us	adding	max+1,	max+2
and	so	on?	The	dance	never	ends.



Of	course	the	counting	numbers	aren’t	the	only	simple	number	sequence	that
most	of	us	would	recognize.	You	can	make	a	sequence	by	doubling	the	previous
number:

Or	you	can	have	sequences	with	a	back-and-forth	alternation	of	steps,	for
example:

There’s	the	Fibonacci	sequence,	and	others	relying	on	adding	previous	numbers:

Or	sequences	where	multiplication	is	involved:

And	there’s	no	need	to	stick	to	whole	numbers.	As	far	back	as	the	ancient
Greeks	there	has	been	an	awareness	of	sequences	of	fractions,	such	as:



Strange	sequences
At	first	sight,	chains	that	go	on	for	ever	seem	harmless,	but	it	doesn’t	take	long
to	find	some	that	are	strange.	In	a	series*	we	add	the	numbers	up	as	we	go	along
to	produce	a	sum.	Take	a	very	simple	series,	alternating	1	and	–1:

It’s	hardly	rocket	science.	Each	1	is	cancelled	out	by	a	–1,	so	the	total	of	the
series	is	0:

Or	is	it?	Just	shift	the	brackets	and	we	still	have	a	series	that	cancels	out,	but
now	we’ve	got	a	1	left	over:

So	the	same	series	adds	up	to	both	0	and	1.	This	has	been	rephrased	as:	“If	you
turn	a	light	bulb	on	and	off	an	infinite	set	of	times,	does	it	end	up	on	or	off?”	It
could	be	either.	This	is	a	mathematician’s	answer	–	a	physicist	will	tell	you	that
it’s	off,	because	the	bulb	has	blown.

Or	take	another	simple	series	where	each	item	is	half	the	last:



It	seems,	as	we	add	in	element	after	element	…

…	that	it’s	going	to	eventually	reach	2:

…	though	in	practice	with	any	particular	number	there’s	always	a	little	gap	left:

You	could	say	that	the	series	adds	up	to	2	if	you	have	an	infinite	set	of
components	–	but	what	does	that	mean?	And	how	can	an	infinite	number	of
things	add	up	to	a	finite	quantity?



The	infinity	machine
In	1949,	the	German	mathematician	and	physicist	Hermann	Weyl	(1885–1955),
a	contemporary	of	Einstein,	devised	an	imaginary	“infinity	machine”,	inspired
by	this	sequence.	Such	a	machine	would	carry	out	a	sequence	of	steps,	taking
(say)	1	second	for	the	first	step,	½	second	for	the	second	step,	¼	second	for	the
third	step	and	so	on.	In	principle	it	could	undertake	an	infinite	sequence	of	steps
in	a	finite	time.

There	seem	to	be	two	difficulties	in	practice,	though.

ONE	IS	MAKING	ANYTHING	PHYSICAL	HAPPEN	IN	AN	INCREASINGLY	SHORT	TIME	…	…	AND	THE	OTHER	IS	WHETHER	TIME	CAN	TRULY	BE	SPLIT	INTO	INFINITELY
SMALL	SEGMENTS.



Zeno’s	paradoxes
This	series	1	+	½	+	¼	+	1/8	+	1/16	…	was	the	basis	of	one	of	Zeno’s	famous
paradoxes.	Greek	philosopher	Zeno	of	Elea	(c.	490–430	BC)	belonged	to	the
school	of	Parmenides,	which	considered	reality	to	be	unchanging	and	movement
to	be	an	illusion.	Zeno	knocked	up	a	number	of	entertaining	examples	to
demonstrate	the	faulty	nature	of	our	attitude	to	change	and	motion.	Probably	the
best	known	is	the	arrow	that	encourages	us	to	imagine	two	arrows.	One	floats
stationary	in	space.	The	other	is	flying	at	full	speed.	Now	catch	them	at	a
snapshot	in	time.



HOW	DO	WE	TELL	THE	DIFFERENCE?	HOW	DOES	ONE	ARROW	KNOW	TO	MOVE	IN	THE	NEXT	FRACTION	OF	TIME	WHILE	THE	OTHER	DOESN’T?



Achilles	and	the	tortoise
But	the	paradox	that	reflects	our	sequence	of	1	+	½	etc.	concerns	Achilles	and
the	tortoise.	This	unlikely	pair	are	setting	out	on	a	race.	Achilles,	being	after	all	a
hero,	gives	the	slower	tortoise	a	lead.	And	they’re	off.	In	a	very	small	amount	of
time,	Achilles	has	reached	the	tortoise’s	position.	But	by	then,	the	tortoise	has
moved	on.	In	an	even	shorter	amount	of	time,	Achilles	has	reached	the	tortoise’s
new	spot.	And	again	it	has	moved	on.

IT	DOESN’T	MATTER	HOW	MANY	TIMES	YOU	GO	THROUGH	THIS	PROCEDURE	–	AN	INFINITE	SET	OF	TIMES	IF	YOU	LIKE	–	ACHILLES	NEVER	CATCHES	THE	TORTOISE.



It’s	easy	to	see	the	relationship	of	this	paradox	to	the	number	series	if	Achilles
runs	twice	as	fast	as	the	tortoise	(perhaps	he’s	damaged	his	Achilles	tendon,	or
the	tortoise	is	on	steroids).

In	the	time	Achilles	covers	the	first	distance,	the	tortoise	moves	half	that
distance.	While	Achilles	is	catching	up,	the	tortoise	moves	¼	the	original
distance.	In	an	infinite	set	of	moves	they	will	only	get	to	twice	the	original
distance	(which	is	where,	of	course,	the	paradox	falls	down	as	Achilles	powers
through	that	mark).	This	paradox	is	the	infinite	series	1	+	½	+	¼	…	=	2.





Apeiron
There’s	something	unsettling,	both	about	the	idea	of	infinity	itself	and	about	the
way	that	these	infinite	series	can	have	a	finite	sum.	The	Greeks	weren’t	sure
what	to	do	with	the	concept	of	infinity.	They	called	it	apeiron	(roughly
pronounced	a-pay-a-ron).	For	us	“infinity”	is	a	fairly	neutral	word	–	if	anything
it	has	grand	and	dramatic	associations.	But	for	the	Greeks,	apeiron	had	the	same
sort	of	negative	connotations	that	“chaos”	does	today.	In	a	culture	that	placed	a
great	deal	of	emphasis	on	precision,	apeiron	was	indefinite	and	immeasurable.

CALL	YOURSELF	A	HERO?	APEIRON	IS	UNBOUNDED,	UNCONTROLLED	AND	DANGEROUS.



Aristotle
The	man	who	dealt	with	infinity	in	a	way	that	satisfied	the	Greeks,	and	most
mathematicians	until	the	19th	century,	was	Aristotle.	Born	in	384	BC	in
Stagirus,	Aristotle	joined	Plato’s	Academy.	This	was	not	just	an	academy,	it	was
the	academy,	the	original,	set	up	in	the	grove	of	a	man	named	Academos.

Aristotle,	in	the	classic	armchair-musing	fashion	of	a	Greek	philosopher,
examined	infinity.	He	began	by	looking	at	existing	views.	The	Pythagoreans
thought	infinity	was	“what	was	outside	heaven”,	while	the	atomists	believed	it
was	the	attribute	of	a	substance,	like	its	colour,	rather	than	something	that
existed	in	its	own	right.



Infinity	had	to	exist,	Aristotle	decided,	because	time	did	not	have	a	beginning	or
an	end.	Nor	did	the	counting	numbers	stop.	And	the	universe	could	be	without
limit.	Yet	infinity	was	no	more	something	in	its	own	right,	as	the	Pythagoreans
thought,	than	was	number	or	magnitude.	Worse	still,	infinity	also	couldn’t	exist.
Aristotle’s	arguments	are	obscure,	but	the	clearest	one	imagines	an	infinite	body.
It	would	have	to	be	unbounded,	because	otherwise	it	would	be	finite.	Yet	a	body

IT	IS	INCUMBENT	ON	THE	PERSON	WHO	SPECIALIZES	IN	PHYSICS	TO	DISCUSS	THE	INFINITE	AND	TO	INQUIRE	WHETHER	THERE	IS	SUCH	A	THING	OR	NOT,	AND,	IF
THERE	IS,	WHAT	IT	IS.



is	defined	by	its	bounds	–	that	is	how	you	distinguish	it	from	everything	else.	So
an	infinite	body	can’t	exist.

Potential	infinity

IN	VIEW	OF	THE	ABOVE	CONSIDERATIONS,	NEITHER	ALTERNATIVE	SEEMS	POSSIBLE	…	AND	CLEARLY	THERE	IS	A	SENSE	IN	WHICH	THE	INFINITE	EXISTS	AND
ANOTHER	IN	WHICH	IT	DOES	NOT.



WHERE	IS	IT	THEN?



Left	brain/right	brain
When	we	look	back	at	the	ancient	Greeks	it’s	easy	to	misunderstand	their
thinking.	Where	our	maths	is	representational,	using	symbols	to	stand	in	for
values,	theirs	was	much	more	visual	–	hence	the	enthusiasm	for	geometry.	The
Greeks	had	a	mathematics	of	imagery.

Studies	of	the	brain	have	shown	that	it	can	operate	in	two	different	modes,
usually	labelled	left	and	right	brain,	because	one	side	or	the	other	dominates.
When	we	approach	mathematics	we	go	in	left	brain	blazing.	It’s	all	about	logic
and	system	and	number	and	analysis.	But	for	the	Greeks	the	right	brain	was
dominant.	Their	mathematics	was	highly	visual.



The	power	of	algebra
There	are	many	mathematical	problems	that	we	would	now	tackle	using
algebra.	Some	may	have	found	this	a	nightmare	at	school,	but	it’s	attractive	to
maths	fans	because	it’s	basically	a	puzzle.

The	first	step	is	to	make	the	problem	more	compact.	I	could	say	that	the	amount
I’ve	got	in	my	bank	after	one	year	is	the	original	amount	plus	that	same	amount
times	the	level	of	interest.	But	it’s	much	easier	to	see	what’s	going	on	(once	you
get	over	any	discomfort	with	the	symbols)	to	say:

N	=	O	x	(1	+	i)

…	where	N	is	new	amount,	O	is	old	amount	and	i	is	interest	rate.

The	power	of	algebra	starts	coming	through	when	you	get	a	little	more
complexity,	or	you	have	a	form	with	a	particular	solution.	So,	for	example,
anyone	who	has	done	basic	physics	will	be	aware	that	the	kinetic	energy	of	a
moving	object	is	given	by:

…	where	m	is	mass	and	v	is	velocity,	which	would	be	much	more	fiddly	in
words.	Similarly,	most	of	us	will	have	suffered	quadratic	equations	at	school	and
may	vaguely	remember	that	the	solutions	to:



In	a	way	it’s	a	good	job	that	the	Greeks	didn’t	go	in	for	algebra,	because	their
equations	would	have	been	a	nightmare.	Imagine	the	simple	formula:	A	+	B	=	C
+	D.	The	Greeks	had	none	of	the	operator	symbols	that	keep	this	concise.	They
would	have	to	write	out	the	whole	thing	in	text.	And	to	make	matters	worse,	they
wouldn’t	have	bothered	with	spaces	between	words.

Their	formula	would	have	looked	something	like	this:



Yet	for	them	this	wasn’t	the	problem	we	would	see	it	to	be,	because	they	would
approach	many	of	the	mathematical	challenges	that	we	would	assign	to	algebra
from	a	visual	viewpoint.



Visual	thinking
Another	complication	is	that	the	Greeks	didn’t	use	fractions.	Instead	of	“a	half”
they	said	“the	second	part”.	This	is	visual	thinking.	Instead	of	considering
something	to	be	half	the	size	of	another,	they	would	think	of	a	shape	that	fits	into
another	one	twice.	Parts	were	defined	by	the	number	symbol	with	a	dash	over	it
–	letters	were	used	as	numbers,	so	gamma	(γ)	was	3,	while	“the	third	part”	was
gamma	with	a	dash.	Confusingly,	beta	with	a	dash	was	2/3,	with	a	special
symbol	for	“the	second	part”.





The	lack	of	fractions	made	arithmetic	tricky	–	you	needed	a	book	of	tables	to
add	parts.

This	visual	approach	to	maths	favoured	by	the	ancient	Greeks	could	sometimes
be	enlightening.	The	discovery	that	the	series	1	+	½	+	¼	…	adds	up	to	2	is	quite
unnerving	when	you	think	of	it	as	adding	an	infinite	series	of	numbers	together
and	coming	to	a	finite	value.	It	doesn’t	seem	right	that	an	infinite	set	of	anything
should	make	just	2.	If	you	visualize	it,	though,	it	looks	reasonable.

Starting	with	a	unit	shape,	add	in	the	second	part,	the	fourth	part,	the	eighth	part,
the	sixteenth	part	and	so	on.	Approached	visually,	it’s	clear	that	you	will	never
fill	the	box	without	adding	an	infinite	set	of	parts.



Pythagorean	perfection
Even	so,	there	were	some	visually	derived	fractions	that	were	anything	but
natural	to	the	Greeks.	There’s	no	better	example	than	the	affair	of	the
Pythagoreans	and	the	diagonal	of	a	square.

Pythagoras,	another	early	Greek	mathematician	born	in	569	BC,	had	a	school
that	didn’t	just	study	numbers	but	equated	whole	numbers	with	creation.	The
universe	was	thought	to	be	built	on	whole	numbers	and	their	ratios.	Each	number
from	1	to	10	was	considered	to	have	vital	symbolism.

1	IS	THE	UNIQUE	MIND.	2.	REPRESENTS	OPINION,	WHICH	IMPLIES	CONVERSATION.	3	IS	WHOLENESS	(NEEDING	A	BEGINNING,	MIDDLE	AND	END).	AND	SO	ON.



10	was	a	very	special	number,	the	number	of	perfection.	10	is	the	sum	of	the	first
four	numbers,	but	thinking	visually	like	the	Greeks,	when	objects	are	arranged	in
the	series	1–4	above	each	other	they	form	a	perfect	triangle,	the	simplest	of	the
shapes.

The	Pythagoreans	were	so	convinced	that	10	was	central	to	creation	that	they
insisted	there	had	to	be	an	unknown	tenth	heavenly	body,	an	anti-Earth	that	was
always	behind	the	Sun.	Odd	numbers	were	male,	even	numbers	female.	And
being	the	Pythagorean	crew,	they	had	quite	an	interest	in	such	matters	as
diagonals	of	a	square.



Diagonals	of	a	square
Let’s	keep	it	simple	and	think	of	a	square	that’s	one	unit	on	each	side.	How	long
is	that	square’s	diagonal?	We	know	from	Pythagoras’	theorem	that	all	we	have
to	do	is	multiply	each	of	the	two	sides	by	itself,	add	them	together	and	find	the
square	root.	Here	that’s	1	x	1	and	1	x	1	again,	making	2.	Take	the	square	root	of
this	–	the	number	that	is	multiplied	by	itself	to	make	2	–	and	we	have	the	answer.

IT’S	OBVIOUSLY	BIGGER	THAN	1	AND	LESS	THAN	2.	WE	KNOW	THAT	IT	HAS	TO	BE	A	RATIO	OF	TWO	NUMBERS	…	BUT	WHAT	RATIO?



To	find	the	diagonal,	the	Pythagoreans	were	looking	for	a	ratio	of	two	numbers	a
and	b	where	a/b	=	√2.	With	basic	logic,	depending	only	on	a	knowledge	of	odd
and	even	numbers,	it’s	possible	to	show	that	the	square	root	of	2	is	not	any	ratio
of	two	whole	numbers.	The	argument	goes	like	this.

Imagine	there’s	a	ratio	a/b	=	√2	and	this	is	the	simplest	ratio,	so	a	and	b	are	the
smallest	integers	they	can	be.	That’s	the	same	as	a2	=	2	x	b2.



AS	2	X	ANYTHING	IS	EVEN,	A2	MUST	BE	EVEN,	SO	A	IS	EVEN	(BECAUSE	ODD	X	ODD	=	ODD).



Drowning	by	numbers
If	a	is	even,	it	can	be	divided	by	2.	So	a2	can	be	divided	by	4.	But	a2	=	2	x	b2,	so
b2	can	be	divided	by	2.	So	b2	(and	b)	is	even.	Both	a	and	b	are	even;	they	can
both	be	divided	by	2.	This	counters	our	starting	point,	setting	a	and	b	as	small	as
possible.	So	you	can’t	have	a	ratio	a/b	=	√2.	The	square	root	of	2	is	irrational*:
it	can’t	be	made	from	a	ratio	of	whole	numbers.

According	to	legend,	the	Pythagoreans	were	so	horrified	at	this	discovery	that
when	one	of	their	school,	Hipparsus,	let	out	the	secret,	he	was	forcibly	drowned.



Historically,	this	whole	business	sounds	unlikely.	Remember,	the	Greeks	didn’t
have	the	concept	of	fractions	in	the	same	way	as	we	do.	Their	mathematical
work	was	geometrical,	dealing	with	diagrams,	not	formulae.	Their	view	of	the
length	of	the	diagonal	of	a	unit	square	was	that	it	was	something	between	1	and
2	that	was	not	in	the	ratio	of	lengths	of	any	two	sides	of	an	object.



In	practice,	the	Pythagorean	philosophy	of	the	perfection	of	number	was	entirely
separate	from	geometry,	which	was	not	directly	related	to	numbers.

TO	US,	IT’S	SIMPLY	NOT	MEASURABLE.



Squaring	the	circle
In	fact,	the	diagonal	of	a	unit	square	is	a	relatively	tame	irrational.	We	can	easily
write	down	a	formula	that	describes	it.	But	the	Greeks	were	also	aware	of	less
tractable	irrationals.	The	obvious	example	is	the	ratio	of	the	circumference	of	a
circle	to	its	diameter.	The	challenge	of	working	this	out	fascinated	the	Greeks,	as
did	the	associated	problem	of	working	out	the	size	of	square	with	the	same	area
as	a	circle.

WHAT	A	TETRAGONIDZEIN.



Such	was	the	fascination	of	“squaring	the	circle”	that	the	Greeks	had	a	word	for
someone	who	spent	their	time	trying	to	do	it	–	 	(tetragonidzein).



Transcendental	pi
We	now	know	what	the	problem	with	squaring	the	circle	is.	The	irrational
number	at	the	heart	of	the	circle	is	pi	(π)	–	3.14159…	Unlike	the	square	root	of
2,	this	is	a	number	that	doesn’t	have	a	simple	relationship	to	whole	numbers.	We
can’t	write	down	a	finite	equation	to	calculate	pi.	Pi	is	the	best	known	of	the
transcendental*	numbers.	Just	as	irrational	numbers	have	nothing	to	with
lacking	rational	explanation,	a	transcendental	number	isn’t	likely	to	engage	in
sudden	bursts	of	meditation	or	yogic	flying.	The	term	merely	says	that	the
number	transcends	–	is	outside	of	–	calculation	using	an	equation	with	a	finite
set	of	terms.





Infinity	of	pi
Pi	embodies	a	kind	of	infinity.	You	would	have	to	write	out	an	infinitely	long
decimal	to	capture	its	value	exactly.	It	has	now	been	calculated	to	many	millions
of	places.	For	those	who	enjoy	showing	off	their	number	skills	there	are	a	range
of	rhymes	where	the	word	lengths	indicate	the	sequence	of	digits.	Such	was	a
little	ditty	sent	by	Adam	C.	Orr	of	Chicago	to	the	Literary	Digest	in	1906:



This	doesn’t	mean	that	it’s	impossible	to	calculate	pi	using	a	formula	–	such
methods	have	been	available	since	the	16th	century.	But	unlike	√2,	the	formula
for	pi	(and	other	transcendental	numbers)	depends	on	the	sum	of	an	infinite
series,	rather	than	a	finite	equation	that	can	be	fully	written	down.	With	enough
time	and	computing	effort	you	can	get	as	close	as	you	like	to	pi,	but	you	can’t
calculate	it	absolutely.	The	first	simple	formula,	from	Newton’s	contemporary
John	Wallis,	was:

π/2	=	2/1	x	2/3	x	4/3	x	4/5	x	6/5	…

It’s	a	simple	sequence,	but	it	can’t	be	fully	written	out.



Omega
Although	transcendental	numbers	are	often	the	most	intractable	numbers
considered,	some	are	even	more	incalculable.	The	best	known	is	the	number
named	“Omega”	(Ω)	by	American	mathematician	Greg	Chaitin.	Omega	is
“unknowable”.	If	you	think	of	the	other	numbers	in	terms	of	computer	programs
to	generate	them,	even	pi	can	be	generated	by	a	relatively	short	program	(it
would	just	have	to	be	run	for	an	infinite	time	to	get	an	exact	value).	But	Omega
cannot	be	produced	by	any	program.	It’s	a	sequence	of	digits	that	has	no	pattern
or	structure.	The	only	way	of	generating	it	is	to	write	it	out,	digit	by	digit.



IF	I	COULD	TELL	YOU	HOW	TO	CALCULATE	IT,	IT’S	NOT	OMEGA.



Not	really	numbers	at	all?
By	the	middle	ages,	there	was	a	grudging	acceptance	that	irrational	numbers	like
the	square	root	of	2	had	to	exist,	but	mathematicians	avoided	them	if	at	all
possible.	The	16th-century	German	mathematician	Michael	Stifel	(c.	1486–
1567),	who	was	one	of	the	inventors	of	logarithms,	and	who	introduced	some	of
our	best-known	mathematical	symbols	like	+	and	(ironically)	√,	acknowledged
the	value	of	irrational	numbers	but	was	at	pains	to	say	that	in	many	senses	they
weren’t	numbers	at	all.	These	were	not	values	that	could	be	worked	with	in	the
normal	way	but	rather	they	lay	“hidden	in	a	kind	of	cloud	of	infinity”.



WE	FIND	THAT	THEY	FLEE	AWAY	PERPETUALLY,	SO	THAT	NOT	ONE	OF	THEM	CAN	BE	APPREHENDED	PRECISELY	IN	ITSELF.



God	and	the	infinite
For	the	Christian	philosophers	who	followed	the	Greeks,	infinity	was	a	topic
best	left	to	God.	The	bishop	philosopher	Augustine	of	Hippo	(AD	354–430)
was	clear	that	numbers	could	not	stop,	but	had	to	reach	infinity.	Some	people,	he
suggested,	think	that	knowledge	can’t	encompass	infinity,	even	if	it’s	God’s
knowledge.	But	for	Augustine,	though	it’s	impossible	for	us	to	“number	the
infinite”,	to	limit	God	who	created	the	concept	is	ridiculous.	In	fact,	according	to
Augustine,	the	period	of	time	before	God	created	the	universe	was	infinite,	an
eternity,	compared	with	which	the	universe	had	been	in	existence	for	the	shortest
imaginable	time.



Some	later	theologians,	like	the	Italian	monk	Thomas	Aquinas	(1225–74),
would	not	agree.	Influenced	by	the	Arab	philosophers	and	the	newly
rediscovered	works	of	Aristotle,	Aquinas	would	argue	that	though	God	was
unlimited,	that	did	not	mean	that	he	could	do	the	impossible.	He	couldn’t

THE	INFINITY	OF	NUMBER,	THOUGH	THERE	BE	NO	NUMBERING	OF	INFINITE	NUMBERS,	IS	YET	NOT	INCOMPREHENSIBLE	BY	HIM	WHOSE	UNDERSTANDING	IS	INFINITE.



produce	a	square	circle	or	a	visible	object	that	was	invisible.	For	Aquinas,	God
would	have	the	same	problems	with	infinity.	It’s	not	that	he	couldn’t	do	anything
meaningful	he	set	his	mind	to,	but	making	something	infinite,	or	even	envisaging
the	infinite,	was	not	within	his	grasp	because	it	had	no	reality	as	a	concept.



The	linkage	of	God	with	the	infinite	comes	up	repeatedly	in	world	religions.	In
the	Hindu	scripture	the	Bhagavad	Gita,	we	read:	“O	Lord	of	the	universe,	I	see

ALTHOUGH	GOD’S	POWER	IS	UNLIMITED,	HE	STILL	CANNOT	MAKE	AN	ABSOLUTELY	UNLIMITED	THING,	NO	MORE	THAN	HE	CAN	MAKE	AN	UNMADE	THING.



You	everywhere	with	infinite	form	…”

And	in	the	Jewish	religion	that	gave	birth	to	both	Christianity	and	Muslim
traditions	there	are	specific	references	to	infinity	in	the	mystical	tradition	of	the
Kabbalah.	The	Kabbalah	is	very	much	driven	by	number.	At	the	heart	of	the
Kabbalah	are	ten	properties	or	components	called	the	Sefirot.

THESE	COMPONENTS	ARE	ALL	CONSIDERED	SUBSIDIARY	TO	THE	GODHEAD	–	AND	THAT	IS	CALLED	EIN	SOF	–	IN	EFFECT,	INFINITY.



The	human	perspective
For	later	philosophers,	it	was	more	important	to	consider	the	human	take	on
infinity	than	to	worry	about	God’s	abilities.	Philosopher	David	Hume	(1711–
76)	decided	not	only	that	human	beings	can’t	conceive	of	infinity	(because	our
minds	are	finite),	but	also	that	the	infinite	(and	particularly	the	infinitesimally
small)	could	not	exist.	Hume	demonstrated	the	inability	to	reduce	things	for	ever
by	viewing	a	blot	of	ink	from	a	distance	where	it	was	just	visible.



Hume’s	argument	was	flawed,	equating	the	capabilities	of	the	senses	with
reality.	German	mathematician	David	Hilbert	(1862–1943)	would	suggest	that
the	thought	process	could	not	be	separated	from	reality.	This	being	the	case,	he
suggested,	when	we	think	we’re	dealing	with	infinity,	in	fact	we’re	just	thinking
of	something	very,	very	big.

IF	YOU	THEN	DIVIDE	THE	BLOB	INTO	TWO,	THOSE	DIVIDED	PARTS	DISAPPEAR.	THIS	SHOWS	THAT	THE	DISTANT	IMAGE	HAS	BECOME	VISIBLY	“EXTENSIONLESS”.



Not	everyone	agrees.	Shaughan	Lavine,	Associate	Professor	of	Philosophy	at	the
University	of	Arizona,	points	out	a	very	simple	way	that	anyone	can	envisage
infinity.	As	long	as	you	can	grasp	the	meaning	of	“finite”	and	the	meaning	of
“not”,	he	says,	you	should	have	a	simplistic	picture	of	the	infinite.

WHEN	WE	THINK	THAT	WE	HAVE	ENCOUNTERED	INFINITY	IN	SOME	REAL	SENSE	WE	HAVE	MERELY	BEEN	SEDUCED	INTO	THINKING	SO	BY	THE	FACT	THAT	WE	OFTEN
ENCOUNTER	EXTREMELY	LARGE	AND	EXTREMELY	SMALL	DIMENSIONS.



“Only	a	manner	of	speaking”
Even	so,	some	serious	mathematicians	never	accepted	the	reality	of	infinity,
even	as	a	mathematical	concept.	The	great	German	mathematician	Johann	Carl
Friedrich	Gauss	(1777–1855)	was	convinced	that	infinity	was	an	illusion,	like
the	end	of	the	rainbow,	that	could	never	be	reached,	even	though	we	can	aim	for
it.	“The	infinite”,	said	Gauss,	“is	only	a	manner	of	speaking,	in	which	one
properly	speaks	of	limits	to	which	certain	ratios	can	come	as	near	as	desired,
while	others	are	permitted	to	increase	without	bound.”

Yet	well	before	Gauss’s	time,	someone	did	dare	to	take	on	the	possibility	of	a
real	infinity,	face	to	face.

I	PROTEST	AGAINST	THE	USE	OF	AN	INFINITE	QUANTITY	AS	AN	ACTUAL	ENTITY;	THIS	IS	NEVER	ALLOWED	IN	MATHEMATICS.



real	infinity,	face	to	face.



Galileo
When	it	came	to	dealing	mathematically	with	infinity,	the	Greek	view	passed
relatively	unchanged	through	to	the	Renaissance.	The	first	new	thinking	came
from	that	remarkable	challenger	of	the	status	quo,	Galileo	Galilei	(1564–1642).



Galileo	tends	to	be	remembered	for	dropping	balls	off	the	Tower	of	Pisa,
something	he	probably	never	did	(he	was	a	great	self-publicist,	but	he	never
mentioned	it	–	it	was	only	recorded	many	years	later	by	an	assistant)	and	for
being	locked	up	for	daring	to	suggest	that	the	Earth	rotates	around	the	Sun.	But
he	also	undertook	some	remarkable	thinking	on	the	subject	of	infinity.

Galileo’s	infinite	pondering	took	place	after	his	trial.	Until	then,	his	career	had
been	going	brilliantly.	Although	he	didn’t,	as	is	often	suggested,	invent	the
telescope,	he	heard	about	its	development	in	Holland.



He	was	rewarded	with	a	well-paid	job	and	would	have	been	a	great	success	if	he
hadn’t	written	his	book	supporting	Copernicus’	Sun-centred	model	of	the
universe.	The	way	he	wrote	this	offended	the	religious	hierarchy;	he	was	put	on
trial	and	sentenced	to	life	imprisonment.

WHEN	A	DUTCH	SPECTACLE-MAKER	HEADED	FOR	VENICE	TO	SHOW	OFF	THIS	NEW	DEVICE,	I	HAD	A	FRIEND	DELAY	MY	RIVAL	SO	I	COULD	QUICKLY	CONSTRUCT	A
TELESCOPE.



The	book	(like	his	near-fatal	work	on	the	motion	of	the	Earth)	took	the	form	of	a
conversation	between	characters.	After	wondering	about	what	holds	matter
together,	they	have	a	diversion,	just	for	the	fun	of	it,	into	the	nature	of	infinity.

I	HAD	REAL	TROUBLE	GETTING	THIS	PUBLISHED	-	THE	INQUISITION	WERE	NOT	TOO	KEEN	AFTER	MY	PREVIOUS	BOOK.	BUT	TO	MY	GREAT	SURPRISE,	IT	WAS
EVENTUALLY	TAKEN	UP	BY	THE	DUTCH	PUBLISHER	ELSEVIER.



together,	they	have	a	diversion,	just	for	the	fun	of	it,	into	the	nature	of	infinity.



Infinity	on	wheels
The	most	dramatic	demonstration	of	Galileo’s	ideas	on	infinity	involved	wheels.
He	imagined	a	pair	of	multi-sided	wheels,	one	stuck	to	the	face	of	the	other,
running	on	rails.	Say	they’re	hexagons.	We	give	them	a	turn	until	they	move
from	one	face	on	the	rails	to	the	next	face.	The	bigger	wheel	will	have	moved
forward	by	the	length	of	one	of	its	sides.

The	smaller	wheel	has	to	move	this	distance	too,	even	though	its	sides	are
shorter,	because	the	wheels	are	fixed	together.	It	manages	to	do	this	by	lifting	off
its	rail	for	just	far	enough	to	keep	up	with	the	larger	wheel.

Now	here’s	the	clever	bit.	Galileo	imagines	similar	wheels	but	with	more	and
more	sides.	The	more	sides,	the	smaller	the	jump	the	small	wheel	has	to	make	to
catch	up.	At	the	extreme	we	get	to	two	circular	wheels.	Say	we	give	them	a
quarter-turn.	They	both	move	forward	a	quarter	of	the	circumference	of	the	big
wheel.



The	small	wheel	has	never	left	its	rail	–	yet	it	has	moved	much	further	than	a
quarter	of	its	circumference.	Galileo	argued	that	it	manages	this	by	making	an
infinite	set	of	infinitely	small	jumps	to	bridge	the	gap.

One	of	the	characters	in	the	book,	Simplicio,	is	a	little	slow	and	is	there	to	say
“Duh,	I	don’t	understand”,	so	the	others	can	explain.	After	letting	the	circular
wheels	percolate	through	his	brain,	Simplicio	has	a	complaint.	Galileo	seems	to
be	saying	that	there	are	an	infinite	number	of	points	on	each	of	the	wheels	–	but
somehow,	one	infinity	is	bigger	than	the	other.	The	response	is	rueful.	That’s
just	the	way	it	is	with	infinity	–	a	problem,	Galileo	reckons,	of	dealing	with
infinite	quantities	using	finite	minds.	And	he	goes	on	to	show	how	this	is
perfectly	normal	behaviour	for	the	infinite.



REMEMBER	THAT	WE	ARE	DEALING	WITH	INFINITIES	AND	INDIVISIBLES,	BOTH	OF	WHICH	TRANSCEND	OUR	FINITE	UNDERSTANDING	…	IN	SPITE	OF	THIS,	MEN
CANNOT	REFRAIN	FROM	DISCUSSING	THEM.



Back	to	geometry
One	way	Galileo	demonstrates	the	odd	mathematics	of	infinity	is	to	use
geometry,	the	favourite	tool	of	the	ancient	Greeks.	He	gives	a	geometrical	proof
that	you	can	design	a	cone	and	a	bowl	(the	latter	carved	from	a	solid	slice	of	a
cylinder)	in	such	a	way	that	when	you	make	a	straight	line	cut	through	them,
each	has	the	same	area	and	volume	at	the	point	of	the	cut,	at	whatever	level	you
make	that	cut.	Yet	if	we	move	the	cut	to	the	top,	we	appear	to	have	a	point	and	a
circle,	both	proved	to	be	the	same	“size”.



THIS	PRESENTATION	STRIKES	ME	AS	SO	CLEVER	AND	NOVEL	THAT,	EVEN	IF	I	WERE	ABLE,	I	WOULD	NOT	BE	WILLING	TO	OPPOSE	IT.



The	normal	rules	don’t	apply
Simplicio	doesn’t	feel	this	helps,	so	Galileo	tries	again.	He	makes	sure	Simplicio
knows	what	a	square	is	–	any	number	multiplied	by	itself.	Then	he	imagines
going	through	the	real	numbers,	multiplying	each	by	itself.	For	every	positive
integer	there	is	a	square.	We’ve	an	infinite	set	of	integers,	and	there’s	a	square
for	each	integer.	But	here’s	the	rub.	There	are	far	more	integers	than	there	are
squares.



WE	ARE	LED	TO	CONCLUDE	THAT	THE	ATTRIBUTES	“LARGER”,	“SMALLER”,	AND	“EQUAL”	HAVE	NO	PLACE	IN	COMPARING	INFINITE	QUANTITIES	…



The	infinity	of	1?
This	odd	arithmetic	of	infinity	led	Galileo	to	a	strange	(and	erroneous)
conclusion.	His	argument	went	something	like	this.	There	have	to	be	as	many
squares	as	there	are	natural	numbers*.	But	the	bigger	the	number,	the	more
sparsely	distributed	are	the	squares	(there	are	many	more	numbers	that	aren’t
squares).	So	the	bigger	the	number	gets,	the	further	you	get	from	infinity.	Since
the	further	you	get	down	the	number	line*	the	further	you	are	from	infinity,	it
follows	that	by	turning	back	we	discover	that	if	any	number	is	truly	infinite	it	is
1.	And	just	like	infinity,	1	x	1	=	1.



I	MEAN	THAT	UNITY	CONTAINS	IN	ITSELF	AS	MANY	SQUARES	AS	THERE	ARE	CUBES	AND	NATURAL	NUMBERS.



A	common	error
The	trap	Galileo	seems	to	have	fallen	into	is	a	common	one	–	the	assumption
that	when	two	things	have	similar	properties	they	can	be	equated.	This	is	part	of
the	basis	of	homeopathy,	where	the	idea	of	the	“law	of	similars”	is	that	a	poison
that	causes	similar	symptoms	to	a	disease	will	cure	that	disease.	Galileo	equated
infinity	and	unity	because	they	had	similar	properties.

UNFORTUNATELY,	IF	YOU	TOOK	GALILEO’S	ARGUMENT	LITERALLY	YOU	WOULD	THINK	THAT	EVERYTHING	WITH	WHITE	CURLY	FUR	AND	FOUR	LEGS	WAS	A	SHEEP	–
EVEN	IF	WHAT	YOU	WERE	LOOKING	AT	WAS	A	WHITE	SOFA	WITH	A	FURRY	COVER.



The	indivisibles
Around	this	time,	the	idea	of	indivisibles	became	popular.	This	was	a	similar
approach	to	the	ancient	Greek	idea	of	atoms.	Ancient	Greek	atoms	were	the
result	of	cutting	something	up	so	small	that	it	was	no	longer	possible	to	cut	any
further	(a-tomos	means	“uncuttable”).	The	use	of	indivisibles	involved	dividing
an	object	into	smaller	and	smaller	pieces,	but	not	necessarily	in	all	three
dimensions.	Take	the	example	of	the	area	of	a	circle.



This	reflected	an	idea	that	went	back	as	far	as	the	ancient	Greek	philosopher
Antiphon.

Antiphon	was	a	contemporary	of	Socrates,	born	in	the	5th	century	BC.	He
suggested	that	you	could	work	out	the	area	of	a	circle	by	drawing	a	regular
polygon	inside	it	and	gradually	increasing	the	number	of	sides	until	it	was	closer
and	closer	to	the	circle	itself.	But	15th-century	philosopher	Nicholas	of	Cusa
went	further.	He	imagined	stacking	segments	of	a	circle	on	top	of	each	other,

IMAGINE	DIVIDING	THE	CIRCLE	INTO	LOTS	OF	THIN	SEGMENTS,	LIKE	PIECES	OF	AN	ORANGE.



alternating	direction.	This	made	something	very	close	to	a	rectangle	that	would
be	πr	in	height	and	r	in	width,	making	its	area	πr2.	Of	course	the	edges	of	those
segments	would	never	be	quite	straight	unless	the	indivisibles	were	infinitely
narrow.

VOILA!



Newton	and	potential	infinity
Galileo	took	a	peek	under	the	carpet	at	the	“real”	infinity	and	found	it
entertainingly	baffling.	But	before	this	true	infinity	was	taken	further,	a	war
broke	out	over	its	virtual	counterpart,	Aristotle’s	“potential	infinity”.	This	wasn’t
a	war	between	nations	but	in	the	mathematical	world.	The	first	contender	in	the
fight	was	Isaac	Newton	(1642–1727).	It’s	often	said	that	Newton	was	born	the
same	year	that	Galileo	died,	as	if	accepting	the	baton	of	greatness.	Paradoxically,
this	is	both	true	and	false.	In	the	old	dating	system,	Newton	was	born	on
Christmas	Day	1642	–	but	in	the	modern	calendar	it	was	January	1643.

Newton	was	a	remarkable	man.	He	had	many	achievements,	from	his	theories	of
light	and	colour	and	his	exploration	of	the	concept	of	gravity,	to	predicting	the
celestial	mechanics	of	planetary	motion.	And	he	also	developed	the	mathematics



needed	to	deal	with	such	complex	motions	–	a	trick	that	depended	on	infinity,
which	he	seems	to	have	invented	early	in	his	career	but	did	not	communicate
until	much	later.

THE	TROUBLE	WITH	MOTION	DUE	TO	GRAVITY	AND	SIMILAR	PHYSICAL	PROBLEMS	IS	THAT	THEY	INVOLVE	ACCELERATION.	BODIES	AREN’T	MOVING	ALONG
SMOOTHLY,	BUT	CHANGING	IN	SPEED	ALL	THE	TIME.	THERE	HAS	TO	BE	SOME	WAY	TO	DEAL	WITH	THESE	CHANGES.



Fluxions
The	mathematical	trick,	which	Newton	called	the	method	of	fluxions,	was
designed	to	help	with	the	calculation	of	values	useful	in	dealing	with
acceleration	–	the	rate	at	which	something	is	changing.	This	is	easy	to	do	when
the	acceleration	is	linear.	Imagine	a	car	accelerating	from	a	standstill,	and,
extremely	conveniently,	the	speed	increases	with	time	as	a	nice	straight	line.

THEN	THE	ACCELERATION	–	THE	RATE	AT	WHICH	THE	SPEED	CHANGES	–	IS	JUST	THE	SLOPE	OF	THAT	LINE:	THE	CHANGE	IN	SPEED	DIVIDED	BY	THE	CHANGE	IN	TIME.
IT’S	LIKE	WORKING	OUT	THE	GRADIENT	OF	A	HILL.



What	Newton	realized	was	that,	when	dealing	with	acceleration	that	follows	a
curve,	if	you	make	the	change	small	enough,	zooming	in	to	the	detail	of	the
curve	until	you’re	practically	dealing	with	a	point,	then	to	all	intents	and
purposes	here	again	is	a	straight	line.	And	so	for	that	tiny	little	section	of	the
curve	it’s	almost	exactly	true	that	the	acceleration	is	the	change	in	distance
divided	by	the	change	in	time.BY	CONCENTRATING	ON	JUST	A	MINUSCULE	SEGMENT	OF	THE	CURVE,	WE	CAN	DEAL	WITH	IT	AS	IF	IT’S	A	STRAIGHT	LINE,	MAKING	IT	ACCESSIBLE	TO

STRAIGHTFORWARD	MATHS.



From	o	to	0
Newton	called	the	rate	at	which	a	quantity	changed	a	fluxion	and	the	value	that
was	changing	a	fluent.	He	represented	the	infinitesimal	change	by	a	little	italic
o.	Now	the	clever	thing	was,	he	imagined	this	o	getting	smaller	and	smaller	until
it	was	zero.	As	o	got	smaller	and	smaller	the	result	became	closer	and	closer	to
correct,	until	o	vanished	away	and	out	came	exactly	the	right	result.	Every	time.

Newton	was	an	odd	man.	He	sat	on	this	idea	for	many	years,	though	he	did
describe	it	to	friends.



The	closest	Newton	came	to	an	explanation	in	his	letter	was	an	obscure	coded
remark.	It	represents:	“Given	an	equation	that	consists	of	any	number	of	flowing
quantities,	to	find	the	fluxions:	and	vice	versa”;	or	to	be	more	precise,	the	Latin
version	of	it,	in	the	form	of	a	count	of	each	letter	present.	(There	are	a	lot	of	v’s,
as	u’s	and	v’s	weren’t	distinguished	in	Latin:	Data	æqvatione	qvotcvnqve
flventes	qvantitates	involvente,	flvxiones	invenire:	et	vice	versa.)

HE	ALSO	MENTIONED	HIS	RESULTS	WITHOUT	ANY	REASONING	IN	A	LETTER	TO	THE	GREAT	GERMAN	MATHEMATICIAN,	GOTTFRIED	WILHELM	LEIBNIZ	(1646–1716).



Beyond	such	cryptic	utterances,	Newton	wouldn’t	publish	his	ideas	for	more
than	30	years.	But	this	doesn’t	reduce	the	importance	of	fluxions.	They
transformed	the	mathematics	of	movement,	providing	the	ultimate	new
technology	of	the	time.



Leibniz’s	calculus
Leibniz	did	much	more	than	read	Newton’s	letters.	He	too	was	working	on	the
problem	–	as	far	as	we	can	tell,	quite	independently.	He	came	up	with	his
method	after	Newton,	but	published	first.	And	he	called	it	calculus*,	using	the
notation	still	in	use	today.

THOUGH	BASED	ON	THE	SAME	MATHEMATICS,	MY	NOTATION	AND	TERMINOLOGY	WAS	EASIER	TO	MANAGE.



His	calculus	soon	became	popular,	leaving	Newton	incandescent	with	rage.	He
had	no	tolerance	for	competition.	Newton	accused	Leibniz	of	plagiarism,	and
would	continue	to	consider	that	Leibniz	had	robbed	him	of	glory	for	the	rest	of
his	life	–	and	that	was	another	50	years.
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Newton	vs.	Leibniz
Leibniz	felt	slighted.	Apart	from	anything	else,	he	had	clearly	published	first.
His	paper	on	calculus	went	to	print	in	1684.	Though	Newton	seems	to	have
devised	fluxions	as	early	as	1671,	they	didn’t	appear	in	print	until	1687.
Meanwhile,	accusations,	voiced	in	the	icy	politeness	of	the	day,	flew	backwards
and	forwards	across	the	Channel.	Leibniz	felt	forced	to	act	when	one	of
Newton’s	friends,	John	Keill,	published	a	Royal	Society	paper	making	explicit
accusations	of	plagiarism.

F%©*?$#!



Leibniz	was	wounded.	He	was	a	Fellow	of	the	Royal	Society	and	didn’t	expect
such	treatment.	Keill	was	asked	to	apologize,	but	only	acknowledged	that
Leibniz’s	notation	was	original	–	hardly	an	apology.	Leibniz	complained	again.
This	pushed	the	Royal	Society	into	action.	A	committee	of	eleven	men	was	set
up	to	establish	the	truth.	The	final	report	was	written	by	no	less	a	figure	than	the
Society’s	president.	Surely	this	would	appease	Leibniz?

The	rift	between	British	and	continental	mathematicians	lasted	a	century.

SADLY	NOT.	THE	PRESIDENT	OF	THE	ROYAL	SOCIETY,	THE	AUTHOR	OF	THIS	“IMPARTIAL”	REPORT,	WAS	SIR	ISAAC	NEWTON	HIMSELF!



Notation
One	reason	why	Leibniz’s	calculus	has	proved	more	popular	than	Newton’s
fluxions	is	that	the	notation	Leibniz	invented	was	so	much	more	practical	than
Newton’s.	Newton’s	squashed	o	caused	confusion	with	zero,	and	didn’t	give	any
information	about	what	was	changing.

There	had	been	a	convention	for	some	time	to	use	the	capital	Greek	letter	delta
(Δ)	to	indicate	change.	A	small	delta	(δ)	meant	a	small	change,	so	for	instance,
δx	meant	a	small	change	in	the	quantity	x.

BY	CONTRAST,	I	BUILT	ON	EXISTING	NOTATION	TO	PRODUCE	A	SYSTEM	THAT	WAS	EASIER	TO	FOLLOW	AND	MUCH	EASIER	TO	MANIPULATE.



Leibniz	went	one	step	further	from	the	use	of	δx	to	mean	a	small	change	in	x,
instead	writing	dx	to	mean	an	infinitesimally	small	change	in	x,	the	change
needed	to	perform	the	trick	of	regarding	a	curve	as	a	straight	line.	Where	the
change	in	x	was	dx,	the	rate	of	change	of	x	was	dx/dt,	where	t	is	time.



I	HAVE	AN	EQUIVALENT	SYMBOL	FOR	THE	RATE	OF	CHANGE	OF	X	IN	MY	NOTATION:	AN	X	WITH	A	DOT	OVER	IT,	REFERRED	TO	AS	“PRICKED	NOTATION”.	THE	DOTS
ARE	EASY	TO	MISS	AND	LESS	INFORMATIVE	THAN	MY	ALTERNATIVE.



Differential	and	integral	calculus
As	well	as	dealing	with	rates	of	change	and	similar	problems	–	so-called
differential	calculus	–	both	men’s	technique	handled	the	kind	of	thing	Nicholas
of	Cusa	had	done	when	he	piled	up	the	segments	of	a	circle	to	calculate	an	area.
This	integral	calculus	is	used	to	find	the	area	under	curves,	the	volumes	of
three-dimensional	objects	and	so	on.	Newton	simply	regarded	integration*	as	the
reverse	of	differentiation*	(technically	true)	and	had	no	special	symbols.	Leibniz
regarded	it	as	a	summing	process	and	used	a	stretched	version	of	the	letter	S	(for
“summa”)	to	produce	the	integral	sign	∫	that	we	use	today.

Battling	Bishop	Berkeley

IMAGINE	TAKING	A	SUM,	BUT	DOING	SO	WITH	MORE	AND	MORE,	SMALLER	AND	SMALLER	PIECES.	THE	SUM	BECOMES	STRETCHED.	MAKE	THE	PIECES	SMALL	ENOUGH
AND	I	CAN	COUNT	THEM	AS	RECTANGLES	AND	SUM	THEIR	AREAS.



GOD	IS	ALWAYS	PRESENT	EVERYWHERE	SO	THE	TREE	WILL	BE	OBSERVED	AND	DOES	FALL.



Berkeley	certainly	wasn’t	an	old	fogey	naturally	opposed	to	the	scientific
developments	of	the	day	as,	say,	the	bishops	opposed	to	evolution	were	later
portrayed.	Significantly	younger	than	Newton,	he	was	quite	a	character.	Before
settling	down	as	Bishop	of	Cloyne	in	Ireland	he	had	spent	some	time	in	the
Americas.



I	BOUGHT	A	HOUSE	IN	NEWPORT,	RHODE	ISLAND	AS	A	BASE	IN	AN	ATTEMPT	TO	SET	UP	A	COLLEGE	IN	THE	WEST	INDIES.	BUT	FUNDS	RAN	OUT	AND	I	HAD	TO	RETURN
HOME.



The	infidel	mathematician
Oddly,	Bishop	Berkeley	produced	his	argument	in	response	not	to	Newton	or
Leibniz,	but	Edmond	Halley	(1656–1742),	the	Astronomer	Royal,	the	“infidel
mathematician”	of	the	title.	Halley	was	a	vocal	atheist	and	had	persuaded	a
friend	of	Berkeley’s	to	denounce	Christianity	on	his	deathbed.	Berkeley	found
this	deeply	offensive,	and	this	led	to	his	outburst	on	fluxions.	Halley,	both
Astronomer	Royal	and	Savillian	professor	of	geometry	at	Oxford,	was	a	great
supporter	of	Newton.	He	had	personally	published	Newton’s	great	work
Principia	to	make	sure	it	reached	the	public.	And	inevitably	he	was	all	for
fluxions.	But	Berkeley	found	something	inconsistent,	almost	hypocritical	about
this.

THOUGH	I	AM	A	STRANGER	TO	YOUR	PERSON,	YET	I	AM	NOT,	SIR,	A	STRANGER	…	TO	THE	AUTHORITY	THAT	YOU	THEREFORE	ASSUME	IN	THINGS	FOREIGN	TO	YOUR
PROFESSION;	NOR	TO	THE	ABUSE	THAT	YOU,	AND	TOO	MANY	MORE	OF	THE	LIKE	CHARACTER,	ARE	KNOWN	TO	MAKE	…



Berkeley	pointed	out	that	the	method	of	fluxions	involved	an	inconceivably
small	quantity	–	one	so	small	that	it	was,	in	effect,	zero,	but	that	still	had	a	value.
Berkeley	referred	to	Newton’s	disappearing	o’s	as	the	ghosts	of	departed
quantities.	This	could	only	be	taken	on	trust.	Fair	enough.	But	Halley	regularly
attacked	Christianity	specifically	because	it	required	faith:	it	could	not	be
submitted	to	absolute	proof.

This	wasn’t	just	nit-picking.	There	is	something	worrying	at	the	heart	of	fluxions
(and	just	in	case	anyone	tried	to	wriggle	out	this	way,	Berkeley	also	points	out

HYPOCRISY!



that	Leibniz’s	calculus	has	the	same	problem).



Dividing	zero	by	zero
Let’s	imagine	we’re	dealing	with	a	simply	accelerating	spacecraft.	Its	speed	at
any	time	is	the	square	of	the	length	of	time	it	has	been	flying.	The	acceleration	is
the	slope	of	the	curve.	The	change	in	time	is	o	and	the	change	in	speed
(remember	speed	is	time	squared)	is	(time	+	o)2	–	time2.

Expanding	that	out,	the	change	in	speed	is	time2	+	2	x	time	x	o	+	o2	–	time2,
which	is	2	x	time	x	o	+	o2.	We	then	divide	it	by	the	change	in	time	to	get	the
slope,	which	gives	us:

(2	x	time	x	o	+	o2)/o

Newton	cancelled	out	the	squashed	o	to	get	to:

2	x	time	+	o

Finally	he	let	the	o	ebb	away	to	nothing.	And	the	result	was	2	x	time	–	which	is
correct.	But	notice	what	he	did.	The	fact	that	o	became	zero	has	a	big	impact	on
the	previous	step,	where	the	o	on	top	and	bottom	were	cancelled	out.	Newton
divided	zero	by	zero.

Once	you	divide	zero	by	zero,	all	bets	are	off.	Anything	with	zero	on	top	should
be	zero.	Anything	divided	by	zero	should	be	infinite.	To	see	the	confusion
caused,	you	only	have	to	look	at	the	attempts	of	two	early	Indian	mathematicians
to	explain	this	ratio.



ZERO	DIVIDED	BY	ZERO	IS	ZERO!



In	practice,	0	over	0	is	indeterminate	–	it	doesn’t	have	a	result.	It’s	the	equivalent
of	asking:	“What	happens	when	an	irresistible	force	is	applied	to	an	immovable

NO!	ANYTHING	DIVIDED	BY	ZERO,	INCLUDING	0/0,	IS	INFINITE.



of	asking:	“What	happens	when	an	irresistible	force	is	applied	to	an	immovable
object?”	It’s	meaningless.



Flow	and	change
Newton	himself	didn’t	have	a	problem	with	this,	as	he	saw	fluxions	very
differently	to	the	way	we	normally	think	of	calculus.	The	normal	process,	based
on	Leibniz’s	approach,	is	to	imagine	a	quantity	that	you	shrink	smaller	and
smaller	until	it	approaches	zero.	But	Newton	wasn’t	dealing	with	quantities.	His
imagery	was	all	about	flow.	His	squashed	o	was	being	diluted	–	it	was	in	the
process	of	flowing	away	to	nothing,	like	a	sink	of	water	emptying	down	the
plughole.



I	AM	NOT	CONSIDERING	WHAT	IS,	BUT	HOW	THINGS	MOVE	AND	CHANGE.



Tending	towards	zero
At	the	time,	despite	Bishop	Berkeley’s	efforts,	the	problem	with	calculus	was
mostly	swept	under	the	carpet.	After	all,	it	worked.	Newton	saw	his	o	as	flowing
towards	0	but	never	reaching	it	–	later	mathematicians	would	say	it	“tended
towards	0”.	Eventually	calculus	was	tidied	up	by	using	a	value	that’s	just	as
small	as	you	need	it	to	be.	Instead	of	dealing	with	the	infinitesimally	small,	you
are	now	dealing	with	something	that	is	inexhaustibly	small	but	never	reaches
zero.	Infinity	is	the	limit	of	the	process,	but	it’s	a	limit	you	never	need	reach.
Technically	it’s	still	a	fudge,	but	it	works.	Calculus	does	the	job.



IT’S	OKAY,	IT’S	STILL	THERE.



Finding	a	symbol
Up	to	now,	infinity	was	useless.	But	with	calculus,	infinity	came	into	its	own.
Whether	you	were	doing	differential	calculus	and	considering	infinitesimally
small	increments,	or	integral	calculus	and	adding	together	an	infinite	set	of
infinitely	narrow	segments,	infinity	was	a	working	tool	of	the	mathematician.
And	that	meant	it	needed	a	symbol.	As	it	happens,	one	had	just	been	produced.
The	lemniscate,	∞,	that	drunken	figure	of	eight	now	used	to	represent	infinity,
was	introduced	in	a	work	on	conic	sections	by	John	Wallis	(1616–1703),	the
man	behind	the	formula	for	π,	who	would	be	significantly	more	famous	today	if
he	hadn’t	had	so	many	glorious	colleagues.

LET	∞	DENOTE	INFINITY.



Wallis	was	originally	a	theologian,	but	he	turned	out	to	be	a	superb	code-cracker
for	the	Parliamentarians	during	the	English	Civil	War.	It	was	this	that	earned
him	the	Savillian	chair	of	geometry	as	Halley’s	predecessor	–	and	he	was
talented	enough	to	keep	the	position	after	the	restoration	of	the	monarchy.

Wallis	didn’t	explain	why,	but	he	casually	remarked:	“let	the	symbol	∞	denote
Infinity”.

PERHAPS	IT	CAME	FROM	THE	OLD	ROMAN	SIGN	FOR	1,000	(LATER	REPLACED	BY	M)	…



But	now,	at	least,	infinity	had	a	symbol.

…	OR	IT	MAY	BE	A	VARIANT	ON	THE	SMALL	GREEK	LETTER	OMEGA	–	OR	JUST	AN	INFINITE	LOOP.



The	Möbius	strip	and	Klein	bottle
Even	a	circle	is,	in	effect,	an	infinite	loop	as	it	has	no	end,	but	a	Möbius	strip	is
a	much	more	appealing	representation	of	infinity.	Made	by	giving	a	strip	of
paper	a	single	twist,	then	joining	the	two	ends,	the	Möbius	strip	is	a	two-
dimensional	object	that	has	only	one	side.

It’s	easy	enough	to	demonstrate	this	–	put	a	pen	on	the	strip	at	any	point	and
draw	along	the	paper.	Eventually	the	pen	will	return	to	the	original	point,
running	along	the	whole	surface.	More	dramatic	still	is	the	Klein	bottle	–	a
three-dimensional	object	with	one	surface.



A	TRUE	KLEIN	BOTTLE	WOULD	HAVE	TO	BE	TWISTED	THROUGH	A	FOURTH	DIMENSION,	BUT	IT’S	POSSIBLE	TO	MAKE	A	3D	MODEL.



Bolzano	and	real	infinity
Apart	from	Galileo,	pretty	well	everyone	since	Aristotle	had	been	dealing	with
potential	infinity	–	and	that’s	what	the	curve	of	the	lemniscate	represents.	But	in
the	early	19th	century,	Italian	mathematician	Bernard	Bolzano	(1781–1848)
would	try	to	get	his	mind	around	the	real	thing.	In	his	retirement,	and	published
after	his	death,	he	wrote	a	book	called	Paradoxes	of	the	Infinite.	He	argued
against	philosophers	like	Hegel	who	had	suggested	that	infinity	is	not	a	true
value	but	rather	a	direction.	Bolzano	said	that	a	truly	infinite	quantity	–	such	as
the	length	of	a	straight	line	unbounded	in	either	direction	–	can	be	established.



Bolzano	also	showed	something	that	would	be	very	significant	when	another
mathematician,	Georg	Cantor,	got	to	work.	Galileo	had	used	the	fact	that	every
positive	integer	has	a	corresponding	square	to	demonstrate	some	of	the	strange
properties	of	infinity.

MOST	OF	THE	PARADOXICAL	STATEMENTS	ENCOUNTERED	IN	THE	MATHEMATICAL	DOMAIN	…	ARE	PROPOSITIONS	WHICH	EITHER	IMMEDIATELY	CONTAIN	THE	IDEA
OF	THE	INFINITE,	OR	AT	LEAST	IN	SOME	WAY	OR	OTHER	DEPEND	UPON	THAT	IDEA	FOR	THEIR	ATTEMPTED	PROOF.



Without	being	able	to	say	anything	directly	about	the	nature	of	this	continuum	of
numbers,	he	was	able	to	prove	that	it	was	possible	to	match	off	every	number
between	0	and	1	with	every	number	between	0	and	2,	just	as	the	integers	could
be	matched	off	with	their	squares.

Like	Galileo,	Bolzano	had	political	problems.	His	career	started	with	stellar
promotion.	In	1805,	aged	24,	he	was	awarded	the	chair	of	philosophy	of	religion
in	Prague.	Although	his	significant	work	was	mathematical,	he	was	a	priest	and
philosopher.	It	has	been	suggested	that	his	retirement	in	1820	was	forced	on	him
by	the	Church,	but	more	likely	it	was	the	Viennese	government.	Universities	still

I	LOOKED	AT	ANOTHER	INFINITY	–	THE	INFINITE	SET	OF	EVERY	NUMBER	BETWEEN	SAY,	0	AND	1.



mostly	insisted	on	teaching	standard	texts,	but	Bolzano	defied	the	authorities	by
devising	his	own	course.	Worse,	he	preached	against	waging	war.

MUCH	OF	HIS	BEST	WORK	WAS	UNDERTAKEN	IN	“RETIREMENT”,	FINANCIALLY	SECURE	THANKS	TO	A	MYSTERIOUS	BENEFACTOR,	FRAU	HOFFMAN.



Cantor:	mind-bending	infinity
Towards	the	end	of	the	19th	century,	one	man	used	Bolzano’s	work	as	a
stepping	stone	to	think	about	the	true	nature	of	infinity.	His	name	was	Georg
Cantor	(1845–1918),	and	he	would	go	mad	as	a	result.

Cantor	spent	all	his	working	life	at	the	university	in	Halle.	This	is	a	German
town	famous	for	music,	but	not	for	maths.	Cantor	thought	he	would	soon	move
on	–	and	he	probably	would	have	done,	had	he	not	come	up	with	some
conclusions	that	were	so	mind-bending	that	at	least	one	mathematician	would	set
out	systematically	to	ruin	Cantor’s	career.



The	joy	of	sets
Cantor’s	first	great	contribution	was	to	formalize	the	mathematics	of	sets*.	Sets
had	been	around	really	as	long	as	people	conceptualized	–	but	Cantor	embedded
them	firmly	into	mathematics.	A	set	is	just	a	group	of	things.	They	could	have
something	in	common	–	like	the	set	of	things	that	look	like	an	orange,	or	the	set
of	people	with	the	name	Brian	–	or	they	could	be	as	disparate	as	the	set	of	things
you	thought	about	today.

Cantor	built	on	existing	work	to	pull	together	a	picture	of	how	sets	operate	that
lets	us	do	everything	from	define	the	numbers	to	establish	the	basic
mathematical	operations.



BY	A	SET	WE	ARE	TO	UNDERSTAND	ANY	COLLECTION	INTO	A	WHOLE	M	OF	DEFINITE	AND	SEPARATE	OBJECTS	m	OF	OUR	INTUITION	OR	OUR	THOUGHT.



SOME	OF	THE	OLDER	CHINESE	SETS	ARE	QUITE	POETIC	–	FOR	EXAMPLE,	THERE	WAS	A	SET	OF	“THINGS	THAT	LOOK	LIKE	A	FLY	WHEN	SEEN	FROM	A	DISTANCE”.



Venn	diagrams
The	interaction	of	sets	is	often	demonstrated	using	Venn	diagrams.	Although
apparently	simplistic,	these	images	devised	by	Cambridge	mathematician	John
Venn	(1834–1923)	–	whose	other	great	claim	to	fame	was	building	an
automated	cricket	bowling	machine	that	bowled	out	the	top	Australian	batsmen
in	1909	–	can	cram	in	a	surprising	amount	of	detail.	With	just	a	couple	of	circles
and	a	rectangle	we	can	identify	the	relationships	between	the	sets	of	all	vehicles,
cars,	all	red	vehicles,	red	cars,	cars	that	aren’t	red,	red	vehicles	that	aren’t	cars,
vehicles	that	are	red,	cars	or	both,	and	vehicles	that	are	neither	cars	nor	red.



Venn	diagrams	caused	bitterness	in	the	mathematical	community.	The	great
mathematician	Leonhard	Euler	(1707–83)	had	devised	something	similar,
though	lacking	the	crucial	element	of	overlapping	shapes,	before	Venn.	But
despite	this	heritage,	Venn	was	attacked.	In	his	book	The	Mathematical
Universe,	William	Dunham	writes:	“No	one,	not	even	John	Venn’s	best	friend,
would	argue	that	his	underlying	idea	is	very	deep	…	the	Venn	diagram	is	neither
profound	nor	original.	It	is	merely	famous.	Somehow	within	the	realm	of
mathematics,	John	Venn’s	has	become	a	household	name.	No	one	in	the	long
history	of	mathematics	ever	became	better	known	for	less.	There	is	really
nothing	more	to	be	said.”

VENN’S	INNOVATION	…	MIGHT	JUST	AS	WELL	HAVE	BEEN	DISCOVERED	BY	A	CHILD	WITH	A	CRAYON.



Boolean	algebra
A	less	visual	way	to	manipulate	the	contents	of	sets	is	Boolean	algebra,	named
after	English	mathematician	George	Boole	(1815–64),	whose	natural	talent	for
mathematics	earned	him	a	university	chair	without	any	formal	training.	Boolean
algebra	became	hugely	useful	when	computers	came	along	–	it’s	the	approach
taken	by	online	search	engines.	Boolean	algebra	uses	simple	terms	to	operate	on
sets.	For	example,	“AND”	is	the	equivalent	of	two	overlapping	regions	in	a
Venn	diagram.

SO	A	“RED	CARS”	REGION	IS	THE	COMBINATION	OF	“RED	VEHICLES”	AND	“CARS”.	IN	SET	THEORY	THIS	IS	CALLED	THE	INTERSECTION	OF	THE	SETS,	JUST	AS	THE
SHAPES	INTERSECT	ON	THE	DIAGRAM.



Another	powerful	Boolean	term	is	“OR”.	This	refers	to	items	that	might	be	in
either	of	a	pair	of	sets,	effectively	combining	sets.	On	a	Venn	diagram,	OR	is	the
equivalent	of	merging	two	shapes.	So	by	using	“red	vehicles”	OR	“cars”,	we’re
dealing	with	a	set	that	includes	all	cars	and	all	red	vehicles.	Because	of	the	way
it	acts,	this	operation	is	called	the	union	of	the	sets.	A	final	important	Boolean
term	is	“NOT”,	which	enables	us	to	take	a	chunk	out	of	a	set.

SO,	FOR	EXAMPLE,	“RED	VEHICLES”	NOT	“CARS”	WOULD	BE	THE	RED	VEHICLE	SHAPE	WITH	THE	CARS	SHAPE	CHOPPED	OUT	OF	IT.



Making	sets	of	the	world
It’s	easy	to	think	of	set	theory	as	an	abstract	mathematical	concept,	but	it’s
central	to	the	way	we	deal	with	the	world.	Technically	a	person	is	a	collection	of
atoms,	or	at	a	less	detailed	level	a	collection	of	cells.	But	we	deal	with	a	person
as	a	whole	–	the	set	that	is	“a	person”.	Similarly,	we	could	never	interact	with
the	world	if	we	didn’t	apply	sets	all	the	time.	We	would	have	to	give	each
animal	we	ever	met	a	separate	name	–	but	instead	we	devise	the	set	of	dogs	(say)
and	so	can	identify	a	particular	animal	as	a	dog.





For	our	purposes	we	need	to	pick	out	one	aspect	of	set	theory,	called
cardinality*.	Let’s	think	of	two	very	simple	sets.	The	first	is	the	set	of	legs	on
my	dog.	The	second	is	the	four	horsemen	of	the	apocalypse.	These	two	sets	have
the	same	cardinality	if	I	can	pair	off	the	members	of	the	sets	on	a	one-to-one
basis.	So,	for	example,	the	front	right	leg	could	pair	up	with	Death,	front	left
with	Famine,	and	so	on.	I’ve	exhausted	both	legs	and	horsemen,	so	they	have	the
same	cardinality.	But	–	and	here’s	the	clever	thing	–	I	needn’t	know	how	many
legs	or	horsemen	there	are.

IF	WE	DIDN’T	TAKE	THIS	APPROACH	WE	WOULD	HAVE	TO	LEARN	HOW	TO	OPERATE	EVERY	SINGLE	LIGHT	SWITCH	WE	EVER	CAME	ACROSS	SEPARATELY.



I	DO	KNOW	IT’S	FOUR,	BUT	THE	IMPORTANT	THING	IS	I	DIDN’T	NEED	TO	KNOW.



Peano	and	the	cardinals
Before	Cantor	got	involved,	Italian	mathematician	Giuseppe	Peano	(1858–
1932)	had	already	used	the	cardinality	of	a	set	to	define	the	cardinal	numbers*	–
the	counting	numbers.	Peano	had	some	quaint	notions.	Medieval	scholars	wrote
their	papers	in	Latin	for	wider	understanding	–	and	so	did	Peano,	even	though
Latin	wasn’t	exactly	popular	by	the	1890s.	Later,	in	1903,	he	devised	an
artificial	language,	Latino	sine	flexione.	It	was	supposed	to	be	a	universal
academic	language	to	return	to	the	easy	communication	that	medieval
universities	enjoyed.	His	invention	was	simplified	Latin	with	modern	words
from	Italian,	English,	German	and	French	added.

I	PUBLISHED	MY	MASTERPIECE	FORMULARIO	MATHEMATICO	IN	LATINE	SINE	FLEXIONE,	BUT	THE	LANGUAGE	NEVER	TOOK	OFF.



We	use	the	counting	numbers	without	thinking,	but	Peano	gave	them	a	formal
basis.	Numbers	have	no	physical	reality	–	I	can’t	paint	a	picture	of	five,	only	the
symbol,	or	five	objects.	But	Peano	defined	the	cardinals	using	sets.	He	started
with	the	empty	set*,	representing	nothingness,	the	absence	of	anything,	and
defined	zero	as	this	empty	set.	He	then	defined	the	cardinal	number	of	a	set	as
the	number	of	sets	it	contains,	building	them	up	like	Russian	matryoshka	dolls.



SO	1	IS	THE	SET	CONTAINING	THE	EMPTY	SET.	2	IS	THE	SET	CONTAINING	BOTH	THE	EMPTY	SET	AND	THE	SET	CONTAINING	THE	EMPTY	SET.	AND	SO	ON.



Russell’s	paradox
Although	set	theory	is	the	basis	of	much	of	maths,	not	all	mathematicians	are
comfortable	with	it,	because	it	tends	to	generate	paradoxes.	The	central	paradox
of	set	theory	was	identified	by	British	philosopher	Bertrand	Russell	(1872–
1970),	who	spent	many	years	working	on	the	philosophy	and	logic	of
mathematics.	Russell’s	paradox	depends	on	the	idea	of	sets	that	are	members	of
themselves.	So,	for	example,	“Everything	that	is	not	a	dog”	is	a	set	that	includes
itself	(because	the	set	is	not	a	dog).	But	the	set	“All	pieces	of	music”	does	not
include	itself,	because	the	set	is	not	a	piece	of	music.

SET	THEORY	IS	AN	ILLNESS	THAT	IS	AFFLICTING	MATHEMATICS,	OF	WHICH	IT	WILL	EVENTUALLY	BE	CURED.



Russell	then	looked	at	the	set	“Sets	that	aren’t	members	of	themselves”.	This	set
would	include,	for	instance,	the	set	“All	pieces	of	music”.

If	it	is	a	member,	then	it	isn’t	a	member.	If	it	isn’t	a	member,	then	it’s	not	a	set
that	isn’t	a	member	of	itself	–	so	it	should	be	a	member.	It’s	a	bit	like	trying	to
work	out	if	the	statement	“This	is	a	lie”	is	true.	Russell	showed	that	this	paradox
was	fundamental	to	set	theory.

IS	THE	SET	“SETS	THAT	AREN’T	MEMBERS	OF	THEMSELVES”	A	MEMBER	OF	ITSELF?	(YOU	MAY	NEED	TO	READ	THAT	A	COUPLE	OF	TIMES.)



I	WOULDN’T	BE	A	MEMBER	OF	A	SET	THAT	WOULD	HAVE	ME	AS	A	MEMBER!



Cantor	and	subsets
With	set	theory	in	place,	Cantor	was	ready	to	build	on	Galileo’s	observations	on
the	integers	and	the	squares	(see	here).	The	infinite	set	of	counting	numbers	has
the	same	cardinality	as	the	set	of	squares,	because	we	can	pair	them	off	like	dog
legs	and	horsemen.	And	the	squares	are	a	subset	of	these	integers.	“Subset”	is	a
spot	of	set	theory	that	has	become	common	usage.	Here,	it	means	that	all	the
squares	are	members	of	the	set	“positive	integers”,	but	they	aren’t	the	full	set.
Cantor	used	this	behaviour	to	define	an	infinite	set.



This	underlines	a	crucial	aspect	of	cardinality.	However	much	cardinality	is
described	as	the	ability	to	put	a	set	into	one-to-one	correspondence	with	another
set,	because	cardinality	is	a	measure	of	size	we	tend	to	think	of	cardinality	as	the
number	of	items	in	a	set.	When	I	say	the	legs	on	my	dog	has	the	same	cardinality
as	the	horsemen	of	the	apocalypse,	we	assume	this	is	because	there	are	four	of
each	–	but	it’s	not.	There	are	infinitely	fewer	squares	than	there	are	positive

AN	INFINITE	SET	HAS	A	ONE-TO-ONE	CORRESPONDENCE	WITH	A	SUBSET.	IT	HAS	THE	SAME	CARDINALITY	AS	ITS	SUBSET.



integers.	Yet	the	squares	and	the	integers	have	the	same	cardinality	because	we
can	pair	them	off,	one-by-one.

FOR	CARDINALITY	THE	NUMBER	OF	ITEMS	IS	IRRELEVANT	–	IT’S	HOW	THE	SET	MATCHES	UP	AGAINST	ANOTHER.



Imaginary	numbers
It	may	seem	like	playing	with	words	to	define	an	infinite	set	as	one	that	has	the
same	cardinality	as	a	subset,	something	detached	from	reality,	but	we	have	to
remember	that	mathematics	is	not	about	the	real	world.	It’s	the	logical	following
of	a	set	of	arbitrary	rules	–	the	axioms	on	which	a	system	of	maths	is	based.
Even	unreal	mathematical	concepts	can	be	of	value	in	the	real	world,	though.	A
good	example	is	imaginary	numbers*.	These	are	based	on	the	outcome	of	a
seemingly	simple	question	–	what	is	the	square	root	of	a	negative	number?
What,	for	example,	is	√–1?



We	are	looking	for	the	number	that,	multiplied	by	itself,	gives	–1.	But	we	know
that	both	1	x	1	and	–1	x	–1	are	1.	Neither	is	the	square	root	of	–1.	So
mathematicians	assign	a	value	of	i	to	the	square	root	of	–1.	A	whole	structure	of
mathematics	has	been	built	on	these	imaginary	numbers,	and	on	complex
numbers*,	combining	real	and	imaginary,	such	as	3	+	2i.

Engineering	and	physics	make	heavy	use	of	imaginary	numbers,	as	long	as	the
final	result	eliminates	them,	because	they	are	an	easy	way	to	extend	the	number

I	HAVE	AN	IMAGINARY	NUMBER	OF	IMAGINARY	FRIENDS	…



final	result	eliminates	them,	because	they	are	an	easy	way	to	extend	the	number
line	into	two	dimensions.	The	real	numbers	form	a	traditional	number	line
running	horizontally	and	the	imaginary	numbers	another	number	line	running
vertically.	Any	point	on	the	two-dimensional	space	is	then	identified	by	a
complex	number.

IMAGINARY	NUMBERS	AREN’T	“REAL”,	BUT	THEY	STILL	HAVE	IMMENSE	VALUE.



Aleph	null
Once	we’re	taking	a	set	theory	approach	to	infinity	–	true	infinity,	rather	than
Aristotle’s	potential	infinity	–	it	needs	a	different	symbol.	Cantor	chose	aleph,
the	first	letter	of	the	Hebrew	alphabet,	and	specifically	he	called	the	infinity	of
the	counting	numbers	aleph	zero	or	aleph	null	(χ0).	This	suffix	was	a	good
example	of	the	mathematician’s	view	of	the	world.	Anyone	else	might	assume
that	infinity	is	infinity.	But	mathematicians	are	hypersceptics.	We	can’t	assume
that	all	infinities	are	the	same;	there	has	to	be	a	clear	identification	of	what	is
meant	by	infinity.	Aleph	null	is	the	basic	infinity,	the	infinity	of	the	positive
integers.



There	has	been	some	dispute	as	to	why	Cantor	chose	aleph	as	the	symbol	for
“true”	infinity,	just	as	no	one	is	entirely	certain	why	Wallis	devised	the
lemniscate.	It	has	been	suggested	that,	though	Cantor’s	family	was	Christian,	he
had	Jewish	roots	and	was	aware	of	the	mystical	tradition	of	the	Kabbalah,	where
one	of	the	representations	of	the	infinite	Ein	Sof	was	the	letter	aleph.	There’s	no
doubt	that	Cantor	was	influenced	by	religious	imagery,	and	he	would	certainly
have	been	aware	of	the	use	of	“the	alpha	and	the	omega”	in	Christianity.	It	may
be	he	was	simply	bored	with	Greek	symbols.

THE	CARDINALITY	OF	THE	COUNTING	NUMBERS	IS	ϐ0	–	BUT	IS	THAT	TRUE	OF	ALL	INFINITE	SETS?



Aleph	null	has	some	strange	qualities.	We	can	add	1	to	it	and	still	end	up	with
the	same	value.	You	can	see	why	this	happens	if	you	imagine	putting	the	series
1,	2,	3	in	one-to-one	correspondence	with	x,	1,	2,	3…	So	1	in	the	first	series
corresponds	with	x	in	the	second,	2	in	the	first	series	with	1	in	the	second,	and	so
on.	You	can	go	through	the	whole	lot	matching	them	off,	so	they	have	the	same
cardinality.	What’s	more,	add	aleph	null	to	itself	and	you	get	aleph	null.
(Because	1,	2,	3…	and	1a,	1b,	2a,	2b…	have	the	same	cardinality.)	For	that
matter,	you	can	multiply	aleph	null	by	itself	–	and	still	get	aleph	null.	Yet	really
it	hardly	seems	surprising	that	this	happens,	because	infinity	is	infinity.





Cardinals	and	ordinals
When	Cantor	devised	aleph	null	he	was	thinking	of	cardinal	numbers,	the
numbers	that	define	the	size	of	a	set.	Yet	the	number	7,	say,	has	more	than	one
application,	which	would	lead	to	a	second	kind	of	infinity.	The	symbol	7	may
mean	the	cardinal	value	“7”	as	in	“I	have	7	oranges”.	But	7	is	also	an	ordinal*.
“Cardinals”	and	“ordinals”	sound	vaguely	religious,	but	ordinal	just	means	a
number	dependent	on	order.

If	I	have	a	row	of	oranges,	I	can	say:	“This	bit	of	the	row	contains	7	oranges”	–	a
cardinal	value.	But	I	can	also	say:	“This	is	orange	number	7”	–	its	ordinal	value.

Although	we’re	used	to	thinking	of	integers	in	order,	the	full	set	of	integers	can’t
have	ordinal	values.	This	is	because	to	have	ordinal	values,	every	subset	of	a	set
has	to	have	a	first	value.	You	might	think	“Surely	every	set	has	a	first	value?”
But	the	integers	don’t.	Think	of	the	number	line	of	all	the	integers.

THIS	ORANGE	HAS	CARDINAL	VALUE	1,	BUT	ORDINAL	VALUE	7.



On	the	other	hand,	the	counting	numbers,	the	positive	integers,	do	have	a	first
value,	so	they	also	have	ordinal	values.

IT	LOOKS	SOMETHING	LIKE	…	-5	-4	-3	-2	-1	0	1	2	3	4	5	…	BUT	WHAT	IS	THE	FIRST	VALUE?	WE	CAN’T	ASSIGN	ONE.



Ordinal	infinity
For	finite	numbers	there’s	no	obvious	distinction	between	cardinals	and	ordinals.
But	they	diverge	at	infinity.	We	know	that	χ0	+	1	=	χ0	but	this	can’t	be	true	with
the	ordinal	infinity	–	order	continues.	For	ordinal	infinity,	Cantor	resorted	to
traditional	Greek	symbols,	using	the	“ultimate”	omega,	ω,	as	the	limit	of	the
ordinal	list	0,	1,	2,	3,	4…	This	would	then	be	followed	by	ω	+	1,	ω	+	2.	and	so
on…	The	mathematics	of	ω	can	be	a	little	tricky.	This	is	because	ω	+	2	is	not	the
same	as	2	+	ω,	and	ω	x	2	is	not	the	same	as	2	x	ω.



The	reasoning	goes	something	like	this.	You	can	represent	ω	+	2	as	{1,	2,	3…
ω1,	ω2)	where	ω1	and	ω2	are	the	next	two	values	after	ω.	And	2	+	ω	is	{ω1,	ω2,	1,
2,	3.}.	In	the	latter	case	any	initial	segment	of	the	set	is	smaller	than	an	infinite
set,	so	2	+	ω	=	ω.	But	for	ω	+	2	the	segment	before	ω1	is	infinite,	so	the	whole
set	is	bigger	than	ω.	The	ωs	build	up	through	and	(ωω)ω	to	ω	raised	to	the	power
of	ω	for	ω	times.	This	is	(arbitrarily)	given	the	name	ε0,	and	so	it	continues.



Cantor	developed	a	hierarchy	of	ordinal	infinities,	but	was	aleph	null	the
cardinal	limit?

ω	IS	JUST	THE	START.



Countably	infinite
Cantor	wanted	to	check	how	flexible	aleph	null	really	was.	χ0	is	the	cardinality
of	the	counting	numbers	and	the	squares,	or	for	that	matter	the	odd	or	even
positive	integers.	These	sets	are	called	countably	infinite*	or	denumerable.	At
first	sight	this	term	“countably	infinite”	is	an	oxymoron.	By	definition,
something	infinite	can’t	be	counted.	Apart	from	anything	else,	as	we	saw	with
the	integers	and	the	squares,	such	a	set	can	be	put	in	a	one-to-one
correspondence	with	a	subset.	How	can	you	count	anything	like	that?	But
countable	just	means	having	the	same	cardinality	as	the	counting	numbers.



1,	2,	3,	4…	INFINITY!	AH	AH	AH	AH	AH	AH!



Cantor’s	elegant	proof
Was	aleph	null	the	cardinality	of	all	infinite	sets?	Were	they	all	countably
infinite?	Cantor	started	with	rational	fractions,	fractions	made	out	of	the	ratio	of
whole	numbers.	He	was	to	prove	that	there	were	also	aleph	null	of	these,	using	a
delightfully	neat	proof	that	requires	no	maths.

Imagine	laying	out	every	rational	fraction	in	a	huge	table.	We’re	actually
repeating	many	of	the	fractions.	If	you	look	down	the	diagonal,	they’re	all	1.	It
doesn’t	matter	that	we’ve	got	redundancy:	the	table,	continued	for	ever	in	both
directions,	has	every	single	ratio	in	it.



Next,	Cantor	set	up	a	repeating	path	through	the	table.	In	this	case,	it’s:	“Move
one	to	the	right,	go	down	diagonally	left	until	you	hit	the	edge,	go	one	down,	go
diagonally	up	right	until	you	hit	the	edge.	Then	repeat.”	Finally,	he	put	each	item
in	that	path	in	one-to-one	correspondence	with	a	counting	number.	He	had
effectively	proved	that	aleph	null	applies	to	the	rational	fractions	as	well	–	they
have	the	same	cardinality	as	the	positive	integers	because	they	match	one-to-one
by	going	through	this	sequence.

THOUGH	THIS	IS	THE	PATH	I	USED,	IT’S	NOT	THE	ONLY	ONE	THAT	EXISTS.	THE	POINT	IS	THAT	THERE’S	A	MECHANISM	TO	SET	UP	THE	ONE-TO-ONE	CORRESPONDENCE.



Covering	the	number	line
The	infinity	of	rational	fractions	has	a	surprising	quality.	Imagine	a	number	line
from	0	to	infinity,	like	a	ruler,	with	every	rational	fraction	marked	on	it.	Our	aim
is	to	cover	the	whole	number	line.	We	issue	each	rational	fraction	with	an
umbrella	(a	simple	T	shape).	The	first	umbrella	is	½	a	unit	in	width,	the	second
umbrella	is	a	¼	unit,	and	so	on.	Each	umbrella	stretches	to	a	rational	fraction
either	side	of	the	one	holding	it,	so	they	cover	the	whole	number	line.	But	½	+	¼
+	1/8.	adds	up	to	1.	So	a	set	of	umbrellas	only	1	unit	in	width	covers	the	infinite
number	line	of	rational	fractions.





Another	Cantor	proof
When	we	speak	of	mathematical	proofs,	we	think	of	pages	of	impenetrable
equations.	When	British	mathematician	Andrew	Wiles	proved	Fermat’s	Last
Theorem	in	1995,	his	proof	ran	to	over	100	pages.	Yet	Cantor’s	proof	of	the
cardinality	of	the	rational	fractions	is	so	simple	that	it’s	easy	to	think	of	it	as	a
trite	truism	that	doesn’t	provide	any	insights.	(To	be	fair,	this	is	a	simplified
presentation	–	to	be	rigorous	requires	more	than	just	“We	can	find	a	path	and	put
it	in	one-to-one	correspondence”.)



As	the	Pythagorean	Hipparsus	found	out	to	his	cost,	rational	fractions	aren’t	the
only	kind	of	non-whole	numbers.	There	are	also	the	irrationals,	the	numbers	that
written	as	decimals	go	on	for	ever	and	ever.	Does	the	full	set	of	these	also
squeeze	into	aleph	null?	With	another	blindingly	simple	proof,	Cantor	was	to
show	that	this	wasn’t	the	case.	He	imagined	putting	every	single	decimal,
rational	and	irrational,	between	0	and	1	into	a	list.	If	he	could	achieve	that,	then

IT	WOULD	SEEM	OBVIOUS	THAT	ALL	NUMBERS	COULD	BE	TREATED	SIMILARLY.	BUT	CANTOR	COULDN’T	LEAVE	IT	THERE.



he	could	use	exactly	the	same	one-to-one	proof,	matching	each	decimal	against
its	position	in	the	list,	and	would	prove	that	this	was	another	aleph	null	set.

To	work	this	proof,	Cantor	needed	to	be	able	to	study	sequential	numbers	in	the
list.	If	they	are	in	order	that’s	impossible,	because	the	first	number	is	0.000.	all
the	way	to	infinity	with	1	at	the	end,	the	second	is	the	same	with	2	at	the	end,
and	so	on.	So	Cantor	scrambled	the	list	and	picked	out	the	first	few	numbers.



You	can	imagine	this	as	a	number	in	its	own	right:	0.220709…	Now	add	one	to
each	digit.	So	instead	of	reading	0.220709…,	the	diagonal	is	0.331810.	(9	flips
to	zero).

LET’S	LOOK	AT	THE	DIAGONAL	THROUGH	THOSE	NUMBERS	–	THE	FIRST	DECIMAL	PLACE	OF	THE	FIRST	NUMBER,	THE	SECOND	OF	THE	SECOND	AND	SO	ON.



Finally,	Cantor	compared	this	new	number	0.331810.	with	the	original	table.	It’s
not	the	first	number,	because	they	differ	in	the	first	digit.	It’s	not	the	second
number,	because	they	differ	in	the	second	digit.	It’s	not	the	third	number.	And	so
on.	He	had	generated	a	number	that	doesn’t	appear	in	the	list.	Cantor	had	proved
with	beautiful	simplicity	that	you	can’t	cram	all	the	decimals	between	0	and	1
into	a	list	with	cardinality	aleph	null.	The	count	of	these	decimals	was	something
bigger	–	something	bigger	than	infinity.

WE’RE	TALKING	ABOUT	TRANSFINITE	NUMBERS*.	TAKE	A	MOMENT	TO	THINK	ABOUT	THAT.



Points	in	space
Here’s	one	other	remarkable	thing	Cantor	discovered.	Up	to	now	we’ve	been
working	on	a	number	line,	a	one-dimensional	list	of	numbers,	and	have	come	up
with	this	new	infinity	–	Cantor	referred	to	it	as	the	“infinity	of	the	continuum”	or
χc,	since	it	covered	every	number	in	the	continuous	spectrum	between	0	and	1.
It’s	every	point	on	a	line.	But	how	many	points	are	there	in	a	square,	or	a	cube?
The	last	of	Cantor’s	simple	proofs	extends	aleph	to	the	points	in	space.	We’ll
work	it	just	for	a	square,	though	you	can	apply	this	to	any	number	of
dimensions.



We	define	a	position	on	a	line	with	one	number.	So,	for	instance,	on	a	number
line	running	from	0	to	1,	the	half-way	position	is	0.5.	Similarly,	to	define	a	point
on	a	square	we	use	two	numbers.	On	a	map,	these	are	grid	references	or	latitude
and	longitude;	on	a	graph,	X	and	Y	coordinates.	These	are	“Cartesian

HOW	MANY	POINTS?



coordinates”	after	the	French	philosopher	René	Descartes	(1596–1650)	who
demonstrated	the	way	algebra	and	geometry	come	together	in	such	a	plot.





Using	two	numbers	to	locate	a	point	in	a	plane	was	not	Descartes’	invention,
though	–	Ptolemy	(c.	AD	90–168)	had	maps	using	two	coordinates	in	his	AD
150	world	atlas.

In	a	square	that,	like	our	original	number	line,	runs	from	0	to	1	on	both	X	and	Y
sides,	we	can	refer	to	any	point	using	two	numbers	between	0	and	1,	the	X
coordinate	and	the	Y	coordinate.	What	Cantor	spotted	was	that	we	don’t	need
two	numbers	to	refer	to	that	point.	We	can	create	a	new	number	by	alternating
the	digits	in	the	two	values.	So,	for	instance,	a	point	identified	as	0.5921	on	the
X	axis	and	0.2843	on	the	Y	axis	is	uniquely	identified	by	0.52982413,	where	the
odd	decimal	places	identify	the	X	axis	location	and	the	even	the	Y.



When	they	told	you	at	school	that	you	needed	two	numbers	to	identify	a	point	on
a	two-dimensional	plane,	they	were	wrong.	Every	point	is	identified	by	a	single
value.	Of	course	there’s	more	information	in	the	new	number	–	it	has	twice	as
many	decimal	places	–	but	it’s	still	a	single	number.	And	so	the	cardinality	of
points	in	a	square	is	the	same	as	that	of	the	continuum	between	0	and	1,	χc.	The
same	argument	applies	to	the	points	in	a	cube,	or	an	n-dimensional	hypercube.



EACH	POINT	CAN	BE	IDENTIFIED	UNIQUELY	BY	A	NUMBER	BETWEEN	0	AND	1.



The	shock	of	the	infinite
Cantor	seems	to	have	been	more	shocked	by	this	discovery	–	that	χc	applied	to
any	dimension	of	space	–	than	his	other	remarkable	proofs.	It’s	difficult	to
understand	why	this	was	so	shocking	to	him.	Most	minds	are	boggled	by	the
concept	of	bigger	and	smaller	infinities,	while	there’s	something	more	tangible
in	the	idea	that	the	number	of	points	on	a	line	and	the	number	of	points	in	a
three-dimensional	space	(say)	are	identical.

I	SEE	IT	BUT	I	DO	NOT	BELIEVE	IT.



Some	of	the	things	Cantor	had	done	certainly	stretch	the	mind,	but	it	wasn’t
anything	we’ve	seen	so	far	that	drove	him	to	insanity.	In	part	it	was	the
frustration	that	one	aspect	of	infinity	would	elude	him	for	the	rest	of	his	life.	He
had	shown	that	the	infinity	of	the	continuum,	χc,	all	the	fractions	between	0	and
1,	was	bigger	than	aleph	null,	but	was	it	χ1,	the	count	of	aleph	nulls,	just	as	you
could	say	that	χ0	is	the	count	of	the	positive	integers?	It	seemed	reasonable	–	but
Cantor	couldn’t	find	a	proof	for	this,	an	idea	that	became	known	as	the
continuum	hypothesis.



IS	THE	INFINITY	OF	THE	CONTINUUM	ALEPH	ONE?



Power	sets
Cantor	did	take	one	step	in	this	direction,	to	understand	which	we	need	the
concept	of	power	sets.	Let’s	take	a	very	simple	set	of	three	items	–	knife,	fork
and	spoon.	It’s	a	set	of	cardinality	3.	But	it	has	more	subsets.	We	can	identify:





A	total	of	8	subsets.	It	turns	out	that	the	cardinality	of	all	the	subsets	of	a	set,
called	the	power	set,	is	always	2c,	where	c	is	the	cardinality	of	the	set	itself.	In
the	case	of	our	cutlery,	that	is	23,	or	2	x	2	x	2,	which	is	8.

This	feature	of	the	power	set	even	applies	to	the	empty	set,	though	that	needs	a
little	thinking	through.	This	would	make	the	cardinality	of	the	empty	set’s	only
subset	20.	But	what	is	20?	We	generally	think	of	the	power	sign	meaning
“multiply	by	itself	this	number	of	times”.	So	23	is	the	same	as	2	x	2	x	2,	or	8.	But
what	is	20?	It	arises	from	the	way	power	arithmetic	works.	If,	for	instance,	you
multiply	22	(2	x	2)	by	23	(2	x	2	x	2)	you	get	25	(2	x	2	x	2	x	2	x	2).	You	add	the
powers.	So	22	x	20	must	be	22.	Making	20	(or,	for	that	matter,	anything0)	1.



Cantor	proved	that	the	infinity	of	the	continuum	(χc)	was	the	power	set	of	the
real	numbers.	He	could	not	work	out	if	χc	was	χ1,	but	he	could	show	that	it	was

THE	CARDINALITY	OF	THE	POWER	SET	OF	THE	EMPTY	SET	IS	1.



2χ0,	which	he	felt	was	a	step	in	the	right	direction.	You	can	see	this	by	writing
out	all	the	numbers	between	0	and	1	in	binary.	In	binary	0.5,	for	example,	is	0.1
followed	by	an	infinite	row	of	zeros,	while	0.25	is	0.01	followed	by	an	infinite
row	of	zeros,	and	so	on.

Whenever	there’s	a	set	of	things,	each	of	which	can	have	two	values,	the	number
of	combinations	is	2n,	where	n	is	the	number	of	things.	So	we	have	2χ0	possible
numbers	in	the	set	of	numbers	between	0	and	1,	which	has	the	cardinality	χc.

ANY	VALUE	BETWEEN	0	AND	1	CAN	BE	WRITTEN	IN	BINARY	AS	A	ROW	OF	ALEPH	NULL	DIGITS	THAT	ARE	EITHER	0	OR	1.



Cantor	under	attack
While	he	was	under	stress	trying	to	confirm	the	continuum	hypothesis,	Cantor
came	under	academic	attack.	A	one-time	mentor,	Leopold	Kronecker	(1823–
91),	who	was	much	more	powerful	in	the	academic	establishment,	set	out	to	ruin
Cantor	because	Kronecker	simply	could	not	stand	the	implications	of	Cantor’s
work.	Kronecker	was	a	purist.	He	was	happy	only	with	the	existence	of	integers
and	numbers	directly	based	on	them,	like	rational	fractions.

Kronecker	was	determined	to	keep	Cantor’s	work	from	academic	acceptance.

For	a	while	the	battle	between	Cantor	and	Kronecker	seemed	as	if	it	could	go
either	way.	When	Cantor	came	up	with	the	proof	that	the	points	in	an	n-

ANYTHING	ELSE	HE	THINKS	IS	DUBIOUS	–	EVEN	SOMETHING	AS	STRAIGHTFORWARD	AS	AN	IRRATIONAL	FRACTION.	AND	CANTOR’S	ALEPHS	ARE	SIMPLY
BLASPHEMOUS!



dimensional	space	were	of	the	same	cardinality	as	the	continuum	between	0	and
1,	he	did	manage	to	get	it	published	in	a	leading	German	publication,	Crelle’s
Journal	–	but	only	after	many	months	of	delay,	which	an	editor	at	the	journal
confided	was	due	to	a	barrage	of	negative	comment	from	Kronecker.

Cantor	tried	to	take	the	argument	to	Kronecker	by	applying	for	a	professorship
in	Berlin,	which	he	knew	would	enrage	his	Berlin-based	rival.

As	expected,	Cantor’s	application	to	Berlin	failed.	Meanwhile,	Kronecker	dug	a
trap	for	his	opponent.	Cantor’s	papers	were	often	published	in	the	journal	Acta
Mathematica,	run	by	a	friend	of	Cantor’s	called	Magnus	Gösta	Mittag-Leffler.
Kronecker	offered	his	own	papers	to	Mittag-Leffler.	This	was	a	huge	goad	for

KRONECKER	WOULD	FLARE	UP	AS	IF	STUNG	BY	A	SCORPION,	AND	WITH	HIS	RESERVE	TROOPS	WOULD	STRIKE	UP	SUCH	A	HOWL	THAT	BERLIN	WOULD	THINK	IT	HAD
BEEN	TRANSPORTED	TO	THE	SANDY	DESERTS	OF	AFRICA	WITH	ITS	LIONS,	TIGERS	AND	HYENAS.



Cantor	–	he	had	found	a	safe	haven	in	Acta	Mathematica	and	now	his	enemy
was	invading	it.	As	Kronecker	anticipated,	Cantor	played	the	prima	donna,
threatening	to	stop	publishing	with	Mittag-Leffler	if	he	considered	Kronecker’s
paper.

THIS	OF	COURSE	MADE	RELATIONS	BETWEEN	CANTOR	AND	HIS	ONLY	PUBLISHING	FRIEND	STRAINED.



MEANWHILE,	KRONECKER’S	PAPER	EVAPORATED	AWAY.



Cantor	succumbs
Under	constant,	renewed	attack	from	Kronecker,	trapped	in	the	mathematical
backwater	of	the	university	of	Halle,	unable	to	prove	the	so-called	continuum
hypothesis,	Cantor’s	mind	was	shattered.



HE	DIED	IN	1918	IN	A	MENTAL	CLINIC	HE	HAD	REPEATEDLY	HAD	TO	VISIT	OVER	THE	PREVIOUS	YEARS.



The	irony	is	that	Cantor’s	successors	would	prove	that	he	was	wasting	his	time
in	trying	to	pin	down	the	relationship	between	χ0	and	χc.	The	first	step	on	the
route	came	from	another	man	whose	mental	stability	would	be	challenged	by	the
contemplation	of	infinity,	the	German/Czech	mathematician	Kurt	Gödel.



Gödel’s	shocking	proof
Kurt	Gödel	(1906–78)	devised	the	most	shocking	proof	in	mathematics.	His
masterpiece,	the	incompleteness	theorem,	states	that	in	any	system	of
mathematics	there	will	be	some	problems	that	it’s	impossible	to	solve.	A	system
is	the	series	of	axioms,	or	basic	rules	and	assumptions,	on	which	the	maths	is
based.	A	crude	approximation	to	Gödel’s	theorem	is	to	imagine	dealing	with	the
statement:	“This	system	of	mathematics	can’t	prove	that	this	statement	is	true.”
Is	this	statement	true?



Whatever	happens,	this	is	an	unprovable	statement.

Like	Cantor,	Gödel	was	anything	but	a	stable	character.	Though	not	a	Jew,	in	the
1930s	he	found	Nazi	Austria	an	increasingly	uncomfortable	place	to	work.	In
1939	he	and	his	wife	decided	to	escape	to	America.	Unable	to	take	the	western
route,	they	used	the	Trans-Siberian	railway	and	reached	San	Francisco	via	Japan.
But	despite	getting	a	position	at	the	prestigious	Institute	for	Advanced	Study	at

IF	THE	SYSTEM	PROVES	THE	STATEMENT,	THEN	IT	CAN’T	PROVE	IT.	IF	THE	SYSTEM	CAN’T	PROVE	THE	STATEMENT,	IT	STILL	CAN’T	PROVE	IT.



Princeton,	Gödel	suffered	from	increasing	paranoia.	He	was	convinced	that
someone	was	trying	to	poison	him	and	would	eat	only	food	prepared	by	his	wife.
When	she	died	he	effectively	starved	to	death.

WHILE	ON	HOLIDAY,	THE	DISTRACTED	GÖDEL	WAS	NEARLY	ARRESTED	AS	A	SPY	AS	HE	PACED	ALONG	THE	SEAFRONT,	MUTTERING	IN	GERMAN	TO	HIMSELF.	THE
LOCALS	THOUGHT	HE	WAS	WAITING	TO	CONTACT	A	GERMAN	U-BOAT.



Back	to	the	continuum	hypothesis
Gödel	managed	to	prove	that	the	continuum	hypothesis	was	not	inconsistent
with	set	theory,	but	his	mental	state	became	too	unstable	to	ever	apply	his	work
further	to	Cantor’s	problem	with	infinity.	It	was	another,	younger
mathematician,	Paul	Cohen	(1934–2007),	who	showed	that	it	would	never	be
possible	to	either	prove	or	disprove	the	continuum	hypothesis.	No	one	can	be
certain	if	χc,	the	infinity	of	the	continuum	from	0	to	1,	is	the	same	as	χ1.

INSTEAD,	I	WAS	ABLE	TO	PROVE	THAT	THE	CONTINUUM	HYPOTHESIS	IS	INDEPENDENT	OF	THE	AXIOMS	OF	SET	THEORY	–	IT	WORKS	TOTALLY	OUTSIDE	THEIR
BOUNDS.



The	French-born	mathematician	André	Weil	(1906–98),	who	like	many	others
moved	to	the	USA	during	the	lead-up	to	the	Second	World	War,	perhaps	best
summed	up	the	frustration	generated	by	the	kind	of	result	we’re	left	with	after
Gödel	and	Cohen’s	work	on	the	continuum	hypothesis.	It	is	not	inconsistent	with
set	theory,	and	yet	it	can	never	be	linked	with	set	theory.	It	can	neither	be	proved
nor	disproved.	As	long	as	we	stick	with	the	same	axioms	used	as	the	foundation
for	set	theory,	it	will	never	be	possible	to	make	any	further	progress.



GOD	EXISTS	SINCE	MATHEMATICS	IS	CONSISTENT,	AND	THE	DEVIL	EXISTS	SINCE	WE	CANNOT	PROVE	IT.



Does	infinity	exist?
Few	mathematicians	were	as	fussy	as	Kronecker,	but	he	wasn’t	the	only	one	to
be	uncomfortable	with	Cantor’s	revelations	on	infinity.	A	contemporary	once
remarked	that	Cantor’s	ideas	“appear	repugnant	to	the	common	sense”.	In	the
end	we’re	always	plagued	with	the	uncertainty:	does	infinity	truly	exist,	or	is	it
merely	a	convenient	–	as	Aristotle	would	have	it,	a	potential	–	concept?



IT’S	HARD	TO	SAY	IF	THERE’S	A	TRUE	INFINITY	IN	THE	REAL	WORLD.	LIKE	ARISTOTLE,	WE	HAVE	TO	ASK:	DOES	TIME	STOP	OR	END?	IS	THERE	A	POINT	WHERE	WE	CAN
NO	LONGER	DIVIDE	TIME	OR	SPACE?



Fractal	infinity
One	application	that	hints	at	a	real	infinity	is	fractals.	These	provide	a	way	to
produce	an	infinitely	long	path	in	a	finite	space.	The	simplest	approach	is	a	Koch
curve,	described	by	Swedish	mathematician	Helge	von	Koch	(1879–1924)	in
1906.

It	starts	with	an	equilateral	triangle.	We	put	a	1/3-sized	triangle	in	the	middle	of
each	face	of	the	triangle,	pointing	outwards.	We	now	have	a	longer
circumference.	Now	put	new	triangles	1/3	the	size	of	those	extra	triangles	on
each	face.	And	so	on.	The	shape,	sometimes	called	a	Koch	snowflake,	has	a
circumference	that	heads	towards	infinite	length	but	never	emerges	from	a	circle
that	encloses	the	original	triangle.



When	you	zoom	in	to	the	detail	of	a	fractal,	it	resembles	the	larger	whole.	This
“self-similarity”	is	one	of	the	defining	characteristics	of	the	form.	Fractals
emerged	from	the	work	of	Cantor	and	others,	but	did	not	get	the	name	until	1975
when	Polish/French/American	mathematician	Benoît	Mandelbrot	(1924–2010)
devised	the	term	to	emphasize	that	the	results	of	these	mathematical	functions
were	“fractured”.	Mandelbrot	is	probably	best	known	for	the	Mandelbrot	set,	a
particular	fractal	form	that	became	a	poster	image	of	the	1980s.



THE	BOUNDARY	OF	THE	SET	THAT	PRODUCES	THIS	STRIKING	IMAGE	GETS	MORE	AND	MORE	COMPLEX	AS	MORE	DETAIL	IS	ADDED.



Recursion
A	fractal	is	generated	by	repeatedly	applying	what	is	usually	a	(relatively)
simple	equation	to	build	a	structure	that	becomes	more	and	more	complex.	It’s
no	coincidence	that	their	popularity	arose	in	the	1970s	and	80s	as	computers
were	becoming	standard	tools	in	mathematics.	The	repeated	application	of	a
formula	–	recursion	–	is	a	natural	mechanism	for	computing	and	while	the	initial
stages	of	the	Cantor	set	(see	here)	and	the	Koch	curve	can	be	produced	by	hand,
a	structure	like	the	Mandelbrot	set	required	computers	to	reach	a	meaningful
result.



IT	WAS	ALSO	REALIZED	THAT	MANY	NATURAL	FORMATIONS	ARE	LIKE	FRACTALS.



Fractals	in	nature
Although	fractals	can	seem	to	be	abstract	mathematical	forms	–	attractive	but
useless	–	they	actually	mirror	natural	formations.	Trees,	mountain	ranges,
snowflakes,	clouds	are	all	roughly	fractal.	It’s	not	that	there’s	some	inherent
fractal	aspect	to	nature,	but	rather	that	the	way	these	natural	objects	are	formed
involves	a	similar	repeated	simple	process.	The	natural	objects	are	only	roughly
fractal	because	they	don’t	follow	rigid	mathematics	–	there	are	many	influences
that	can	change	the	outcome	–	but	they	usually	have	a	degree	of	the	self-similar
property	common	to	many	fractals.

SOME	OF	THESE	NATURAL	FORMS	–	FERNS,	FOR	EXAMPLE,	AND	MOUNTAIN	RANGES	–	ARE	EASY	TO	SIMULATE	WITH	SIMPLE	FRACTAL	FORMULATIONS.



When	fractals	first	became	popular	it	was	felt	that	they	were	bound	to	have
many	applications.	At	the	time,	photographs	were	becoming	common	on
computers,	and	they	took	up	a	lot	of	the	limited	disk	space	available.	Fractal
researchers	set	up	a	company,	Iterated	Systems,	to	sell	compression	software	for
images.

But	the	technology	never	really	caught	on	and	has	remained	niche.	Fractals	do
have	a	number	of	other	uses,	both	analytical	and	functional,	but	are	yet	to	really

IN	PRINCIPLE,	FRACTAL	COMPRESSION	WAS	BETTER	THAN	THE	DOMINANT	JPEG	FORMAT,	BECAUSE	THE	IMAGES	DIDN’T	BECOME	BLOCKY	ON	ZOOMING	IN	JUST
INCREASINGLY	BLURRY.



have	a	number	of	other	uses,	both	analytical	and	functional,	but	are	yet	to	really
break	out.



Measuring	the	coastline
The	Koch	curve	and	the	Mandelbrot	set	come	close	to	the	real-world	problem	of
defining	the	length	of	the	coastline	of	an	island	like	Britain.	If	you	imagine
measuring	around	the	coastline	using	a	metre	rule,	you	would	come	up	with	one
figure.

Until	we	reach	atomic	limits,	the	length	can	get	as	long	as	you	like.	We’re	used
to	science	being	able	to	come	up	with	precise	values,	but	here’s	a	measurement
that	doesn’t	have	a	specific	value.	The	answer	can	only	ever	be:	“It	depends.”

In	practice,	when	measuring	the	coastline	we	always	hit	physical	limits.	Even
with	a	measuring	device	that	could	distinguish	infinitely	small	differences	in

BUT	USE	A	SMALLER	RULER	THAT	CAN	GO	MORE	INTO	THE	CRACKS	AND	CRANNIES,	AND	YOU’LL	GET	A	LONGER	DISTANCE.



size,	the	atoms	making	up	the	coast	have	a	finite	size	that	could	be	considered
the	limit	of	measurement.	If	we	go	beyond	this,	it	appears	that	there’s	a	distance,
the	Planck	length,	below	which	it	is	inherently	impossible	to	measure.	The
Planck	length	is	around	1.6	x	10-35	metres.	It	also	implies	a	minimal	unit	of	time,
the	time	light	takes	to	cover	such	a	distance,	about	5.4	x	10-44	seconds.



SO	MAYBE	ARISTOTLE	WAS	WRONG	ABOUT	OUR	ABILITY	TO	DIVIDE	TIME	AND	SPACE	FOR	EVER.



The	Cantor	set
Cantor	came	up	with	a	class	of	sets	that	bridges	the	infinity	of	the	continuum	(χc)
and	fractals.	The	best-known	form,	the	Cantor	ternary	set,	is	formed	by	a
straightforward	repeated	action	on	the	continuum	between	0	and	1.

Imagine	the	whole	0	to	1	number	line	as	a	solid	line.	Now	chop	out	the	middle
third	of	that	line,	so	you	have	two	blocks,	each	1/3	in	length,	either	side	of	the
gap.	Next	chop	out	the	middle	third	of	each	of	those	blocks.	So	now	you	have
four	blocks.	And	so	on	for	ever.



It	might	seem	that	when	the	process	is	taken	all	the	way	to	infinity,	the	pattern
will	disappear	as	it	will	be	entirely	eaten	away,	but	there’s	a	subtlety	in	the
definition	of	the	chunks	that	are	taken	out	that	prevents	this	from	happening.

THE	RESULT	IS	A	PATTERN	THAT	GRADUALLY	THINS	OUT	BUT	NEVER	DISAPPEARS.



So	when,	for	example,	the	first	chunk	is	taken	out	from	1/3	to	2/3,	both	the
points	1/3	and	2/3	are	still	there	–	the	gap	is	infinitesimally	smaller	than	the
pieces	left	behind,	providing	enough	material	to	keep	the	pattern	going.

WHAT	IS	DELETED	IS	THE	“OPEN”	MIDDLE	THIRD.	THIS	MEANS	THAT	IT	DOESN’T	INCLUDE	THE	END	POINTS.



The	Cantor	set	is	a	fractal.	If	you	examine	it	at	any	level,	it’s	similar	to	any	other
level,	just	like	the	Koch	snowflake.	This	is	a	set	that’s	a	bit	like	the	series	1	–	1	+
1	–	1	+	1	–	1	+	1…	On	the	one	hand,	when	it	reaches	infinity	there	seems	to	be
nothing	left.	It	appears	that	it	will	be	eaten	away	to	nothing,	and	it	can	be	proved
that	there	are	no	non-zero	intervals	–	chunks	that	are	more	than	a	single
mathematical	point.	However,	there	are	an	infinite	set	of	these	points	–	it	has	the
same	cardinality	as	the	points	in	the	original	line,	χc.

IT’S	THERE	AND	IT’S	NOT	THERE	…



An	infinite	universe?
Fractals	apart,	is	there	physical	infinity?	For	example,	is	the	universe	infinite?
Throughout	scientific	history,	the	answer	has	alternated	between	yes	and	no.
Ever	since	the	ancient	Greeks	there	have	been	arguments	about	the	rights	and
wrongs	of	an	infinite	universe.	Over	time	our	understanding	of	the	scale	of	the
universe	has	grown	and	grown.



By	the	20th	century,	it	was	discovered	that	even	our	nearest	major	galactic
neighbour,	the	Andromeda	galaxy,	was	2	million	light	years	away.

We	now	know	that	the	universe	has	to	be	at	least	90	billion	light	years	across.
Although	we	can	only	see	light	that	has	been	travelling	for	the	lifetime	of	the
universe,	around	13.7	billion	years,	because	the	universe	is	expanding	we	can

I	CALCULATE	THE	UNIVERSE	TO	BE	AROUND	90	TIMES	BIGGER	THAN	THE	SCALE	ASSUMED	BY	ARCHIMEDES	–	ABOUT	0.001	LIGHT	YEARS	ACROSS.



see	about	45	billion	light	years	in	each	direction.	But	we	can’t	know	for	certain
if	it’s	finite.

For	that	matter,	a	finite	universe	could	be	a	part	of	an	infinite	multiverse.

I	BELIEVE	THE	UNIVERSE	MUST	BE	INFINITE,	BECAUSE	IF	IT	WERE	FINITE,	OBJECTS	NEAR	THE	EDGE	WOULD	FEEL	GREATER	GRAVITATIONAL	ATTRACTION	TOWARDS
THE	MIDDLE,	SO	THE	WHOLE	THING	WOULD	COLLAPSE.



Edge	of	the	universe?
As	far	back	as	Roman	times	it	was	argued	that	the	universe	had	to	be	infinite,
because	otherwise	there	would	be	an	edge,	and	what	was	outside?	What	would
happen	to	an	arrow	shot	through	the	edge?	More	recently	it	was	realized	that	a
finite	universe	doesn’t	have	to	have	edges.

It’s	possible	to	translate	the	same	image	into	an	extra	dimension	to	produce	a
finite	universe	with	no	boundaries.	But	even	if	it	did	have	an	edge,	we	now	think
that	nothing	could	cross	the	boundary,	as	the	universe	is	expanding	so	quickly
that	nothing	could	catch	it	up.

THINK	OF	A	SPHERE.	THE	SURFACE	IS	FINITE,	BUT	WITHOUT	EDGES.



One	of	the	most	pragmatic	approaches	to	the	infinity	of	the	universe	is	supposed
to	have	originated	with	Alexander	the	Great.	One	of	the	companions	of	the
young	Macedonian	king	on	his	expeditions	into	Asia	was	the	philosopher
Anaxarchus	(c.	380–320	BC),	a	student	of	Democritus,	the	originator	of	the
first	atomic	theory.	Anaxarchus	informed	Alexander	that	there	were	an	infinite
number	of	worlds,	and	Alexander	is	said	to	have	burst	into	tears.	His	friend
asked	him	what	was	wrong	and	Alexander	came	back	with	a	striking	reply.

Perhaps	this	is	where	modern	generals	go	wrong:	not	enough	of	them	employ
philosophers	on	the	front	line.

DO	YOU	NOT	THINK	IT	A	MATTER	WORTHY	OF	LAMENTATION	THAT	WHEN	THERE	IS	SUCH	A	VAST	MULTITUDE	OF	THEM,	WE	HAVE	NOT	YET	CONQUERED	ONE?



As	it	is,	we	just	don’t	know	about	the	size	of	the	universe.	It	might	seem	that	the
big	bang	theory	makes	the	universe	necessarily	finite,	as	the	whole	thing	is
thought	to	have	emerged	from	a	point.	But	the	big	bang	doesn’t	exclude	our
known	universe	from	being	an	expanding	bubble	in	a	far	larger,	and	quite
possibly	infinite	multiverse.	And,	for	that	matter,	the	big	bang	is	just	one	of	a
number	of	theories	that	match	the	observed	data,	some	of	which	do	allow	for	a
single	infinite	universe.	We	have	no	definitive	proof	either	way.



Quantum	infinity
Perhaps	our	best	chance	of	seeing	infinity	for	real	may	emerge	from	the	nascent
science	of	quantum	computing.	This	is	computing	that	relies	on	a	bit	that	is	not	a
simple	0/1	switch,	as	in	a	conventional	computer,	but	rather	the	state	of	a
quantum	particle	like	a	photon	of	light	or	an	electron.	Quantum	particles	obey	a
whole	different	set	of	rules	to	macro-sized	objects	like	people.



This	is	probably	most	easily	demonstrated	with	an	experiment	that	dates	back	to
the	19th	century,	called	Young’s	slits.

SPECIFICALLY,	A	QUANTUM	PARTICLE	CAN	BE	IN	MORE	THAN	ONE	STATE	AT	A	TIME.



The	slit	experiment
In	this	experiment,	devised	by	Thomas	Young	(1773–1829),	light	is	sent
through	a	pair	of	slits.	The	two	beams	of	light	meet	behind	the	slits	and	interact.
If	you	think	of	light	as	waves,	this	“interference”	is	like	two	sets	of	waves
crossing	each	other.	Some	bits	of	the	waves	will	reinforce	each	other	–	both
going	up	at	the	same	time,	producing	a	particularly	strong	peak.	Some	will
counteract	each	other	–	going	in	opposite	directions	–	leaving	a	calm	patch.
Similarly,	the	light	from	the	two	slits	interferes	to	produce	a	set	of	light	and	dark
bands	on	a	screen	behind	them.

I	USED	THIS	EXPERIMENT	TO	DISPROVE	THE	IDEA	THAT	LIGHT	IS	MADE	UP	OF	PARTICLES.



However,	in	the	20th	century	it	was	discovered	that	light	really	is	made	up	of
particles	–	photons.	We	can	send	photons	through	Young’s	slits	one	at	a	time.
And	the	result	is	exactly	the	same	–	bands	of	light	and	darkness	build	up	on	the
screen	at	the	back.	This	can	work	only	if	photons	go	through	both	slits	and
interfere	with	themselves.

So	these	quantum	particles	are	in	multiple	locations,	and	it’s	only	the	act	of
observing	them	that	forces	them	to	go	through	either	one	slit	or	the	other.

IF	YOU	PUT	A	SENSOR	IN	PLACE	TO	CHECK	WHICH	SLIT	A	PHOTON	GOES	THROUGH,	THE	BANDS	OF	LIGHT	DISAPPEAR.



Spin
For	a	quantum	computer	it’s	easiest	to	use	another	multiple	quantum	peculiarity,
spin.	Quantum	spin	isn’t	really	about	a	particle	spinning	around:	it’s	just	an
analogy.	Spin	is	a	property	of	all	quantum	particles.	When	it’s	measured,	spin
comes	out	as	one	of	two	values:	“up”	or	“down”.

BEFORE	MEASUREMENT,	WE	CAN’T	SAY	WHAT	THE	SPIN	IS	–	WE	JUST	GIVE	IT	PROBABILITIES.	IT	MIGHT	BE	47%	UP	AND	53%	DOWN.	UNTIL	THE	MEASUREMENT	IS
TAKEN,	THE	PARTICLE	IS	IN	BOTH	STATES	WITH	THE	RELEVANT	PROBABILITIES.



If	a	quantum	computer	can	make	use	of	this	spin	state	as	a	quantum	bit	–	a	qubit
–	then	we	have	a	computer	that	isn’t	just	handling	0	or	1,	but	could	deal	with	an
infinitely	long	decimal,	the	number	that	specifies	the	exact	direction	between	the
two	spin	states.

THIS	ISN’T	EASY	TO	USE,	THOUGH.	WHENEVER	YOU	MEASURE	THE	VALUE	OF	A	QUBIT	YOU	DESTROY	ITS	STATE	(AS	WITH	THE	PHOTONS	AND	THE	SLITS),	AND	THEY
CAN	ALSO	COLLAPSE	THROUGH	INTERACTION	WITH	OTHER	PARTICLES	AROUND	THEM.



The	infinitesimal
When	thinking	of	the	infinite,	we’re	never	far	from	its	inverse,	the	infinitely
small.	Although	at	opposite	ends	of	the	mathematical	spectrum,	infinity	and	the
infinitesimal	are	inevitably	bound	together.	The	infinitesimal	may	not	generate
the	same	sense	of	awe	–	infinity	produces	more	of	a	sense	of	wonder	–	yet	the
one	is	simply	the	inverse	of	the	other.

AND	AS	WE’VE	SEEN	WITH	FLUXIONS	AND	CALCULUS,	WHILE	BRUTE	INFINITY	MAY	HAVE	THE	EXCITING	ALEPHS	AND	OMEGAS,	INFINITESIMALS	ARE	THE	ASPECTS	OF
INFINITY	THAT	ARE	MOST	LIKELY	TO	BE	PUT	TO	USE	IN	EVERYDAY	LIFE.



Calculus	gets	around	Bishop	Berkeley’s	concerns	about	“the	ghosts	of	departed
quantities”	by	using	indefinitely	small	values,	rather	than	the	true	inverse	of
infinity,	but	in	the	1960s,	Israeli	mathematician	Abraham	Robinson	showed	that,
just	as	imaginary	numbers	could	be	of	value	even	though	technically	they	don’t
exist,	so	infinitesimals	could	be	useful	mathematical	tools	provided	everything	is
tidied	up	at	the	end.



Instead	infinitesimals	could	be	treated	separately	with	their	own	mathematical
operations.

THERE’S	NO	MORE	NEED	TO	TRY	TO	WORK	OUT	HOW	TO	FIT	INFINITESIMALS	INTO	THE	NORMAL	SCHEME	OF	THINGS	THAN	THERE	IS	TO	PUT	√-1	ON	AN	ORDINARY
NUMBER	LINE.



Non-standard	analysis
It	wasn’t,	of	course,	just	a	matter	of	saying,	“Let’s	call	infinitesimals	a	different
kind	of	number”.	Robinson	used	a	technique	called	model	theory	to	show	that
the	same	approach	that	gives	a	formal	structure	of	arithmetic	operations	on	real
numbers	can	be	stretched	to	include	the	infinitely	large	and	the	infinitely	small.
Robinson’s	approach	became	known	as	non-standard	analysis.



IT	GIVES	A	MEANS	TO	ACCEPT	INTUITIVELY	OBVIOUS	POSSIBILITIES	–	LIKE	NEWTON’S	FLUXIONS	–	BUT	GIVING	THEM	THE	RIGOROUS	TREATMENT	THAT
MATHEMATICIANS	DEMAND.



No	longer	was	it	necessary	to	worry	about	dividing	by	zero	as	the	infinitesimal
faded	to	nothing	–	you	were	dealing	with	acceptable	if	non-standard
mathematical	quantities.

In	non-standard	analysis,	infinitesimals	sit	on	a	number	line	(mathematicians	call
the	special	number	line	including	infinites	and	infinitesimals	the	hyperreal
number	line)	and	are	bigger	than	–a	but	smaller	than	a	for	all	values	of	a.	They
hover	between	the	smallest	negative	and	the	smallest	positive.	Zero	is	the	only
real	infinitesimal,	but	non-standard	analysis	brings	in	a	whole	cloud	of	other,
non-real	numbers	sitting	in	the	gap	between	–a	and	a.	Most	of	us	taught	calculus
will	be	surprised	by	the	validity	of	infinitesimals.	Non-standard	analysis	is
something	that	many	non-mathematicians	still	don’t	realize	exists.	But	these	are
well-established	mathematical	techniques.



THINK	OF	A	NUMBER,	ANY	NUMBER.	IT’S	SMALLER	THAN	THAT.



Infinitesimals	and	Brownian	motion
An	example	of	the	application	of	non-standard	analysis	is	in	the	modelling	of
Brownian	motion.	Back	in	the	1820s,	botanist	Robert	Brown	(1773–1858)
noticed	that	pollen	grains	danced	around	when	viewed	in	a	drop	of	water	under
the	microscope.

By	the	1870s,	this	movement	was	correctly	explained	as	being	due	to	impacts
from	randomly	jiggling	water	molecules,	and	in	1905,	Einstein	developed	a

INITIALLY	I	THOUGHT	THIS	WAS	THE	RESULT	OF	SOME	KIND	OF	LIFE	FORCE,	BUT	I	FOUND	THE	SAME	THING	HAPPENED	WITH	TINY	PARTICLES	OF	MATTER	THAT	WERE
DEFINITELY	DEAD.



from	randomly	jiggling	water	molecules,	and	in	1905,	Einstein	developed	a
mathematical	model	of	what	was	happening	–	but	this	wasn’t	enough.

Einstein’s	model	of	Brownian	motion	(one	of	his	three	landmark	papers	from
1905	that	also	included	the	first	outing	on	special	relativity	and	his	ideas	on	the
photoelectric	effect	that	led	to	quantum	theory)	was	a	statistical	model.



In	the	1970s,	American	mathematician	Robert	Anderson	used	non-standard
analysis	to	map	out	infinitesimally	small	movements	that	proved	to	be	the	only
way	to	produce	a	workable	model	of	Brownian	motion	at	the	detailed	level.

IT	WAS	GOOD	AT	PREDICTING	THE	OVERALL	EFFECT,	BUT	IT	COULDN’T	FOLLOW	WHAT	HAPPENED	TO	INDIVIDUAL	MOLECULES.



way	to	produce	a	workable	model	of	Brownian	motion	at	the	detailed	level.
Those	nonexistent	quantities	were	beginning	to	pull	their	weight.

Robinson’s	work	concentrated	on	infinitesimals,	but	it	does	also	bring	infinity
into	the	hyperreal	number	line.	It	might	seem	at	first	that	Cantor’s	transfinite
numbers	were	coming	out	of	the	closet	and	joining	the	rest	of	maths,	but	this	is
not	the	case.	Cantor’s	alephs	won’t	sit	on	a	number	line	like	Robinson’s
infinities.	The	two	systems	are	incompatible.

The	same	appears	true	of	infinity.	Look	from	one	direction	and	you	get	alephs,
from	another,	non-standard	analysis.	Some	mathematicians	believe	that,	far	from
conflicting,	these	two	approaches	will	yield	important	results	from	their
interaction.

IT’S	A	BIT	LIKE	LOOKING	AT	A	PHOTOGRAPH	OF	A	3D	OBJECT.	IMAGINE	LOOKING	AT	PICTURES	OF	A	SNAKE	TAKEN	FROM	FRONT	AND	SIDE.	THE	PHOTOGRAPHS
WOULD	APPEAR	TO	BE	DIFFERENT	THINGS.



Hilbert’s	Hotel
What	certainly	is	real,	however	is	the	fascination	of	this	subject.	Take	two
classic	paradoxes	of	infinity.	The	first	is	Hilbert’s	Hotel,	named	after	the
German	mathematician	David	Hilbert.	Hilbert’s	Hotel	has	one	unique	feature.	It
has	aleph	null	rooms	–	one	for	each	of	the	infinite	set	of	counting	numbers.	Now
imagine	you	arrive	late	one	day.	It’s	the	only	hotel	in	town.	“Sorry”,	says	the
desk	clerk,	“we’re	full.”	“No	problem”,	you	say.



And	so	on	right	through	the	hotel.	Now	everyone	has	a	room,	but	room	1	is	free
for	you	to	occupy.

It	looks	like	everything’s	fine,	but	then	a	special	coach	turns	up.	It’s	a	coach
with	an	infinite	set	of	passengers	on	board.	Again,	the	desk	clerk	has	to
apologize.	The	hotel	is	entirely	full.	Luckily,	you’re	still	at	reception	and	able	to
take	charge.	“No	problem”,	you	say.

MOVE	THE	PERSON	IN	ROOM	1	TO	ROOM	2.	MOVE	THE	PERSON	IN	ROOM	2	TO	ROOM	3.



And	so	on,	doubling	up	room	numbers	throughout	the	hotel.	Now	all	the	odd-
numbered	rooms	–	an	infinite	set	of	them	–	are	free	for	the	new	guests.
Excellent.

MOVE	THE	PERSON	IN	ROOM	1	TO	ROOM	2.	MOVE	THE	PERSON	IN	ROOM	2	TO	ROOM	4.	MOVE	ROOM	3	TO	ROOM	6.



Boring	people	may	argue	that	Hilbert’s	Hotel	could	never	exist.	There	are	only	a
finite	number	of	atoms	in	the	universe	(at	least	the	basic	big	bang	universe),
loosely	estimated	at	around	1080.	Once	you	have	used	up	all	those	atoms	you
can’t	build	any	more	rooms,	so	the	hotel	has	to	be	finite.

FOR	THE	MATTER,	IT	WOULD	TAKE	INFINITE	TIME	TO	SHIFT	THE	GUESTS	AROUND	TO	ACCOMMODATE	THE	NEW	ARRIVALS	–	WHICH	ISN’T	ENTIRELY	PRACTICAL.



But	that’s	not	the	point.	Even	so,	Hilbert’s	Hotel	is	somewhat	predictable	once
you’re	familiar	with	the	basics	of	transfinite	arithmetic	–	but	not	all	paradoxes	of
infinity	are	so	tractable.



Gabriel’s	Horn
The	second	paradox,	even	more	delightful	to	contemplate,	is	Gabriel’s	Horn.
This	is	the	mathematical	structure	produced	by	plotting	a	graph	of	1/x	(plotting
values	of	1/x,	so	when	x	is	1,	y	is	1,	when	x	is	2,	y	is	1/2,	when	x	is	3,	y	is	1/3
and	so	on)	for	every	value	of	x	greater	than	1,	and	then	spinning	the	resultant
curve	around	the	axis.

Imagine	taking	this	curve	as	a	sheet	of	paper	and	rotating	it	through	360	degrees
around	the	vertical	axis	…	or	using	the	curve	as	a	template	on	a	lathe	to	cut	out	a
three-dimensional	object.	The	result	is	a	shape	like	a	straight	hunting	horn,	but
the	pointy	bit	heads	off	to	infinity.

Now	the	volume	of	Gabriel’s	horn	can	be	calculated	–	it’s	pi:	3.14159	and	so
forth.	If	you’re	wondering	how	something	can	have	a	volume	of	π,	remember	the
shape	is	for	every	x	greater	than	1.	If	that’s	1	metre,	the	volume	is	pi	cubic
metres	–	1	mile	it’s	pi	cubic	miles	and	so	on.

It’s	quite	fun	that	this	infinitely	long	horn	has	a	finite	volume,	but	that’s
reminiscent	of	the	series	1	+	½	+	¼…	adding	up	to	2.	What	sends	a	shiver	down
the	spine	is	that	Gabriel’s	Horn’s	surface	area	is	infinite.	If	we	hold	it	point

BUT	HOWEVER	MUCH	PAINT	WE	HAVE,	WE	CAN	NEVER	COVER	THE	HORN	WITH	IT,	BECAUSE	IT	HAS	AN	INFINITE	SURFACE	AREA.	SPOOKY.



down,	we	know	exactly	how	much	paint	it	would	take	to	fill	Gabriel’s	horn.	Pi
units.

Mathematicians	say	that	this	isn’t	an	issue,	because	volume	and	area	are	two
different	things	–	but	the	joy	is	in	infinity’s	ability	to	tease	us.

Just	like	Hilbert’s	Hotel,	any	attempt	at	a	physical	explanation	of	Gabriel’s	Horn
runs	into	technical	problems.	The	horn	gets	narrower	and	narrower.	Before	long
(at	least	in	terms	of	an	infinitely	long	horn)	it	will	be	so	narrow	that	its	diameter
is	less	than	the	size	of	a	molecule	of	paint.



But	it	still	remains	mindboggling	that	a	surface	that	contains	just	pi	units	within
it	is	infinite	in	area.

AT	A	CERTAIN	DISTANCE	DOWN	THE	HORN	YOU	SIMPLY	WOULDN’T	BE	ABLE	TO	FIT	ANY	PAINT	ON	THE	SURFACE,	SO	YOU	WOULD	HAVE	TO	STOP	PAINTING	HAVING
USED	ONLY	A	FINITE	AMOUNT	OF	PAINT.



The	jungle	of	infinity
Infinity	is	like	a	wild	animal,	spotted	in	the	depths	of	a	forest.	You	catch	a
glimpse	of	something,	but	moments	later	you	aren’t	sure	if	you	saw	it	at	all.
Then,	unexpectedly,	the	animal	comes	into	full	view.	A	real	problem	with
infinity	is	the	dense	undergrowth	of	symbols	and	jargon	that	mathematicians
throw	up.	But	the	jargon	is	there	for	a	good	reason.

But	the	aim	of	this	book	has	been	to	open	up	clear	views	on	this	most
remarkable	of	mathematical	creatures.	Please	continue	to	enjoy	the	world	of
infinity.

IT’S	NOT	PRACTICAL	TO	HANDLE	THE	SUBJECT	IN	DETAIL	WITHOUT	THESE	NEAR-MAGICAL	INCANTATIONS.



Glossary
Algorithm	–	a	set	of	rules	for	solving	a	mathematical	problem.

Calculus	–	mathematical	technique	based	on	infinity	to	deal	with	the	way	one
value	changes	with	another,	or	to	work	out	areas	and	volumes.

Cardinal	numbers	–	the	counting	numbers,	identifying	how	many	of	an	item
there	are	in	a	set.

Cardinality	–	the	property	of	a	set	that	defines	how	big	it	is.	Two	sets	have	the
same	cardinality	if	the	items	in	the	set	can	be	put	in	a	one-to-one
correspondence.

Complex	numbers	combine	a	real	number	and	an	imaginary	number,	such	as
2+3i.	Can	be	represented	as	a	point	on	a	two-dimensional	graph,	with	real
numbers	on	one	axis	and	imaginary	on	the	other.

Converging	series	–	one	where	the	total	of	the	series	is	finite.

Countably	infinite	–	a	set	that	can	be	put	in	one-to-one	correspondence	with	the
counting	numbers.	Also	known	as	denumerable.

Differentiation	–	using	calculus	to	work	out	the	way	one	variable	changes	with
another.	If	the	second	variable	is	time,	it’s	working	out	the	rate	of	change.

Diverging	series	–	one	where	the	total	of	the	series	is	infinite.

Empty	set	–	set	containing	no	items;	corresponds	to	zero.

Fluxions	(method	of)	–	Newton’s	formulation	of	calculus.

Imaginary	numbers	–	numbers	based	on	the	square	root	of	–1.	This	has	no	real
value,	but	is	given	the	value	i.

Indivisible	–	something	that	has	been	divided	repeatedly	and	can	no	longer	be
divided.	The	numerical	equivalent	of	an	atom.



Integer	–	a	whole	number	(no	fractions)	that	can	have	negative	or	positive
values.

Integration	–	using	calculus	to	work	out	the	area	under	a	curve	or	the	volume	of
a	three-dimensional	object.	The	reverse	of	differentiation.

Irrational	number	–	one	that	can’t	be	made	from	a	ratio	of	two	whole	numbers,
such	as	the	square	root	of	2.

Natural	number	–	a	positive	whole	number.	Natural	in	the	sense	that	you	can
have	this	number	of	objects.

Number	line	–	a	sequence	of	numbers	(like	the	integers)	running	along	a	line,
like	the	markings	on	a	ruler.	Conventionally	runs	horizontally.

Ordinal	numbers	–	the	ordering	numbers.	Defines	the	position	of	an	item	in	a
sequence.

Series	–	a	sequence	of	numbers	added	together.

Set	–	a	collection	of	items.	Set	theory	builds	on	the	properties	of	sets	to	generate
the	rules	of	arithmetic.

Subset	–	a	set	that	is	a	part	of	another	set;	e.g.	odd	numbers	are	a	subset	of	the
integers.

Tally	–	means	of	keeping	track	of	counting	using	repeated	marks,	derived	from
counting	on	fingers.

Transcendental	number	–	an	irrational	number	that	can’t	be	calculated	using	a
finite	equation.

Transfinite	number	–	a	number	that	goes	beyond	aleph	null,	the	infinity	of	the
integers.

Unknowable	number	–	a	number	that	can’t	be	calculated	in	any	way	short	of
writing	it	out	digit	by	digit.



Further	reading

A	Brief	History	of	Infinity	–	Brian	Clegg	–	covering	significantly	more	ground
in	an	entertaining	tour	of	infinity’s	role	throughout	history.

The	Calculus	Diaries	–	Jennifer	Ouellette	–	a	personal	tour	of	the	applications
of	calculus.

From	Here	to	Infinity	–	Ian	Stewart	–	mostly	not	about	infinity,	but	an
excellent	tour	of	the	heart	of	modern	maths.

Isaac	Newton	–	James	Gleick	–	probably	the	best	biography	of	this	key	figure	in
the	development	of	calculus.

The	Infinite	Book	–	John	D.	Barrow	–	interesting	book	on	infinity,	particularly
good	on	cosmology	and	applications,	less	strong	on	the	maths.

The	Mystery	of	the	Aleph	–	Amir	Aczel	–	good	biography	of	Georg	Cantor	and
summary	of	his	work.

Understanding	the	Infinite	–	Shaughan	Lavine	–	an	academic	title,	but	gives
excellent	background	on	the	interpretation	and	understanding	of	infinity	through
history.

Zero	–	Charles	Seife	–	engaging	summary	of	the	background	and	importance	of
infinity’s	arch	rival.



Author’s	acknowledgements
Thanks	to	Duncan	Heath	for	all	the	patient	hand-holding	and	guidance,	Oliver
Pugh	for	the	amazing	illustrations,	and	Simon	Flynn	for	introducing	me	to	the
series.	A	particular	thank	you	to	my	inspirational	maths	teacher,	Neil	Sheldon,
who	got	me	interested	in	infinity	in	the	first	place.



Artist’s	acknowledgements
Thanks	to	Duncan	Heath	for	getting	me	on	board	and	effortlessly	orchestrating
this	enormously	enjoyable	project.	Thanks	also	to	Brian	Clegg	(and	Duncan
again)	for	making	my	job	a	whole	heap	easier	by	providing	a	brilliant	text	to
work	with.



About	the	Authors
Brian	Clegg	is	an	award-winning	popular	science	writer	whose	books	include	A
Brief	History	of	Infinity,	The	God	Effect,	Before	the	Big	Bang,	Inflight	Science,
How	to	Build	a	Time	Machine	and	The	Universe	Inside	You.	He	is	a	Fellow	of
the	Royal	Society	of	Arts	and	edits	the	www.popularscience.co.uk	website.

Oliver	Pugh	is	an	award-winning	graphic	designer,	illustrator	and	artist.	Should
the	situation	require	it,	he	will	design,	draw	or	paint	his	way	out.

http://www.popularscience.co.uk


Index
Academos	ref	1
acceleration	ref	1
Achilles	and	the	tortoise	ref	1
Acta	Mathematica	ref	1
al-Khwarizmi	ref	1
aleph	null	(aleph	zero)	ref	1,	ref	2,	ref	3
Alexander	the	Great	ref	1
algebra	ref	1
algorithm	ref	1
Anaxarchus	ref	1
“AND”	ref	1
Anderson,	Robert	ref	1
Antiphon	ref	1
apeiron	ref	1
Aquinas,	Thomas	ref	1
Archimedes	ref	1
Aristarchus	ref	1
Aristotle	ref	1,	ref	2,	ref	3,	ref	4
atoms	ref	1,	ref	2
Augustine	of	Hippo	ref	1

Berkeley,	George	ref	1,	ref	2,	ref	3
Bhagavad	Gita	ref	1
Bhāskara	ref	1
big	bang	theory	ref	1
big	numbers	ref	1
Blake,	William	ref	1
Bolzano,	Bernard	ref	1
“The	Book	of	Calculation”	ref	1
Boole,	George	ref	1
Boolean	algebra	ref	1
Brahmagupta	ref	1
Brown,	Robert	ref	1
Brownian	motion	ref	1

calculus	ref	1,	ref	2,	ref	3,	ref	4,	ref	5
Cantor,	Georg



Cantor,	Georg
and	aleph	null	ref	1,	ref	2,	ref	3
at	Halle	ref	1,	ref	2
and	infinity	of	the	continuum	ref	1,	ref	2,	ref	3
insanity	ref	1,	ref	2,	ref	3
and	points	in	space	ref	1,	ref	2
and	sets	ref	1,	ref	2

Cantor	set	ref	1,	ref	2
cardinal	numbers	ref	1,	ref	2
cardinality	ref	1,	ref	2,	ref	3,	ref	4
Cartesian	coordinates	ref	1
Chaitin,	Greg	ref	1
change	ref	1
Chinese	ref	1
circle,	area	of	ref	1
coastline,	measuring	ref	1
Cohen,	Paul	ref	1
complex	numbers	ref	1
compression	software	ref	1
continuum,	infinity	of	the	ref	1,	ref	2,	ref	3
continuum	hypothesis	ref	1,	ref	2,	ref	3,	ref	4
countably	infinite	sets	ref	1
creation	ref	1

delta	ref	1
Democritus	ref	1
denumerable	sets	ref	1
Descartes,	René	ref	1
differential	calculus	ref	1
differentiation	ref	1
direction	ref	1
Donne,	John	ref	1
Dunham,	William	ref	1

Ein	Sof	ref	1,	ref	2
Einstein,	Albert	ref	1
empty	set	ref	1,	ref	2
Euler,	Leonhard	ref	1
even	numbers	ref	1



existence	of	infinity	ref	1

faith	ref	1
Fermat’s	Last	Theorem	ref	1
Fibonacci,	Leonardo	ref	1
flow	ref	1
fluents	ref	1
fluxions	ref	1,	ref	2,	ref	3,	ref	4,	ref	5,	ref	6
fractals	ref	1,	ref	2
fractions	ref	1,	ref	2
rational	ref	1

Gabriel’s	Horn	ref	1
Galileo	Galilei	ref	1,	ref	2,	ref	3,	ref	4,	ref	5
Gauss,	Johann	Carl	Friedrich	ref	1
Gautama	Buddha	ref	1
Gelon,	King	of	Syracuse	ref	1,	ref	2
geometry	ref	1,	ref	2,	ref	3
God,	and	the	infinite	ref	1
Godel,	Kurt	ref	1
googol	ref	1
gravity	ref	1

Halley,	Edmund	ref	1,	ref	2,	ref	3
Hegel,	G.W.F.	ref	1
Hilbert,	David	ref	1,	ref	2
Hilbert’s	Hotel	ref	1
Hipparsus	ref	1,	ref	2
homeopathy	ref	1
Hume,	David	ref	1
hyperreal	number	line	ref	1,	ref	2

illusion,	infinity	as	ref	1
imaginary	numbers	ref	1
incompleteness	theorem	ref	1
Indian	symbols	ref	1
indivisibles	ref	1
infinite	sets	ref	1
infinitesimals	ref	1



infinity	machine	ref	1
Ingram,	Charles	ref	1
integers	ref	1
integral	calculus	ref	1
integral	sign	ref	1
integration	ref	1
intersection	ref	1
irrational	numbers	ref	1,	ref	2,	ref	3
Iterated	Systems	ref	1

jungle	of	infinity	ref	1

Kabbalah	ref	1,	ref	2
Kasner,	Ed	ref	1
Keill,	John	ref	1
kinetic	energy	ref	1
Klein	bottle	ref	1
Koch,	Helge	von	ref	1
Koch	curve	ref	1,	ref	2,	ref	3
Koch	snowflake	ref	1,	ref	2
Kronecker,	Leopold	ref	1,	ref	2

Latino	sine	flexione	ref	1
law	of	similars	ref	1
left	brain	ref	1
Leibniz,	Gottfried	Wilhelm	ref	1,	ref	2
lemniscate	ref	1,	ref	2,	ref	3
Levine,	Shaughan	ref	1
light	ref	1
logarithms	ref	1

Mandelbrot,	Benoit	ref	1
Mandelbrot	set	ref	1,	ref	2
Mittag-Leffler,	Magnus	Gosta	ref	1
Mobius	strip	ref	1
model	theory	ref	1

natural	numbers	ref	1
Newton,	Isaac	ref	1,	ref	2,	ref	3



Nicholas	of	Cusa	ref	1,	ref	2
non-standard	analysis	ref	1
“NOT”	ref	1
notation	ref	1
number	line	ref	1,	ref	2
hyperreal	ref	1,	ref	2

number	sequences	ref	1

o	ref	1,	ref	2,	ref	3,	ref	4
odd	numbers	ref	1
Olympic	Games	ref	1
Omega	(Ω)	ref	1
omega	(ω)	ref	1
one	(1),	infinity	of	ref	1
opinion	ref	1
“OR”	ref	1
ordinal	infinity	ref	1
ordinal	numbers	ref	1
Orr,	Adam	C.	ref	1

Paradoxes	of	the	Infinite	ref	1
particles	ref	1
parts	ref	1
Peano,	Giuseppe	ref	1
photons	ref	1
pi	ref	1
formula	for	ref	1
infinity	of	ref	1

Planck,	Max	ref	1
Planck	length	ref	1
poetry	ref	1
Poincaré,	Henri	ref	1
points	in	space	ref	1
positive	integers	ref	1,	ref	2,	ref	3
potential	infinity	ref	1,	ref	2,	ref	3
power	sets	ref	1
pricked	notation	ref	1
Ptolemy	ref	1
Pythagoras	ref	1



Pythagoras’	theorem	ref	1
Pythagoreans	ref	1,	ref	2,	ref	3

quadratic	equations	ref	1
quantum	computing	ref	1
qubits	ref	1

rational	fractions	ref	1
ratios	ref	1
real	(true)	infinity	ref	1,	ref	2,	ref	3,	ref	4,	ref	5
real	numbers	ref	1,	ref	2
recursion	ref	1
representational,	maths	as	ref	1
right	brain	ref	1
Robinson,	Abraham	ref	1,	ref	2
Roman	numerals	ref	1
Royal	Society	ref	1
Russell,	Bertrand	ref	1
Russell’s	paradox	ref	1

The	Sand	Reckoner	ref	1,	ref	2
Schrödinger,	Erwin	ref	1
search	engines	ref	1
Sefirot	ref	1
sequences	ref	1
series	ref	1
sets	ref	1
Simplicio	ref	1,	ref	2
Sirrota,	Milton	ref	1
spin	ref	1
square	roots	ref	1
squares	ref	1
diagonals	of	ref	1

squaring	the	circle	ref	1
Stifel,	Michael	ref	1
subsets	ref	1,	ref	2
symbols
Indian	ref	1
for	infinity	ref	1



tallies	ref	1
telescope	ref	1
ten	(10),	as	number	of	perfection	ref	1
tetragonidzein	ref	1
transcendental	numbers	ref	1
transfinite	numbers	ref	1,	ref	2
true	(real)	infinity	ref	1,	ref	2,	ref	3,	ref	4,	ref	5

union	ref	1
unique	mind	ref	1
universe	ref	1,	ref	2,	ref	3
unknowable	numbers	ref	1

Venn,	John	ref	1
Venn	diagrams	ref	1
visual,	maths	as	ref	1
visual	thinking	ref	1

Wallis,	John	ref	1,	ref	2,	ref	3
waves	ref	1
Weil,	André	ref	1
Weyl,	Hermann	ref	1
wheels,	infinity	on	ref	1
wholeness	ref	1
Wiles,	Andrew	ref	1

X	coordinate	ref	1,	ref	2

Y	coordinate	ref	1,	ref	2
Young,	Thomas	ref	1
Young’s	slits	ref	1

Zeno	of	Elea	ref	1
Zeno’s	paradoxes	ref	1
zero	(0)	ref	1
dividing	by	zero	ref	1
as	empty	set	ref	1
tending	towards	ref	1



Many	Introducing	Graphic	Guides	are	now	available	in	ebook	format	-
including	the	titles	below.	Check	in	at	introducingbooks.com/ebooks/	to
keep	up	to	date	with	more	titles	as	they	are	published	in	ebook	format.

9781848312104	-	Introducing	Psychoanalysis

9781848310865	-	Introducing	Wittgenstein

9781848311688	-	Introducing	Anthropology

http://www.introducingbooks.com/ebooks/


9781848312036	-	Introducing	Political	Philosophy

9781848311855	-	Introducing	Semiotics

9781848311831	-	Introducing	Lacan



9781848311145	-	Introducing	Hinduism

9781848310650	-	Introducing	Keynes

9781848311152	-	Introducing	Shakespeare



9781848311770	-	Introducing	Plato

9781848311787	-	Introducing	Romanticism

9781848316652	-	Introducing	Alain	Badiou



9781848312050	-	Introducing	Derrida

9781848311671	-	Introducing	Aesthrtics


	Title Page
	Copyright
	Contents
	Big numbers
	Googoled
	Symbols from India
	The Book of Calculation
	0, a powerful tool
	Archimedes: The Sand Reckoner
	The poetry of infinity
	Number sequences
	Strange sequences
	The infinity machine
	Zeno’s paradoxes
	Achilles and the tortoise
	Apeiron
	Aristotle
	Potential infinity
	Left brain/right brain
	The power of algebra
	Visual thinking
	Pythagorean perfection
	Diagonals of a square
	Drowning by numbers
	Squaring the circle
	Transcendental pi
	Infinity of pi
	Omega
	Not really numbers at all?
	God and the infinite
	The human perspective
	“Only a manner of speaking”
	Galileo
	Infinity on wheels
	Back to geometry
	The normal rules don’t apply
	The infinity of 1?
	A common error
	The indivisibles
	Newton and potential infinity
	Fluxions
	From o to 0
	Leibniz’s calculus
	Newton vs. Leibniz
	Notation
	Differential and integral calculus
	Battling Bishop Berkeley
	The infidel mathematician
	Dividing zero by zero
	Flow and change
	Tending towards zero
	Finding a symbol
	The Möbius strip and Klein bottle
	Bolzano and real infinity
	Cantor: mind-bending infinity
	The joy of sets
	Venn diagrams
	Boolean algebra
	Making sets of the world
	Peano and the cardinals
	Russell’s paradox
	Cantor and subsets
	Imaginary numbers
	Aleph null
	Cardinals and ordinals
	Ordinal infinity
	Countably infinite
	Cantor’s elegant proof
	Covering the number line
	Another Cantor proof
	Points in space
	The shock of the infinite
	Power sets
	Cantor under attack
	Cantor succumbs
	Gödel’s shocking proof
	Back to the continuum hypothesis
	Does infinity exist?
	Fractal infinity
	Recursion
	Fractals in nature
	Measuring the coastline
	The Cantor set
	An infinite universe?
	Edge of the universe?
	Quantum infinity
	The slit experiment
	Spin
	The infinitesimal
	Non-standard analysis
	Infinitesimals and Brownian motion
	Hilbert’s Hotel
	Gabriel’s Horn
	The jungle of infinity
	Glossary
	Further Reading
	Author’s acknowledgements
	Artist’s acknowledgements
	About the Authors
	Index

